939 resultados para waveguide band reject filter
Resumo:
A quasi-optical deembedding technique for characterizing waveguides is demonstrated using wide-band time-resolved terahertz spectroscopy. A transfer function representation is adopted for the description of the signal in the input and output port of the waveguides. The time-domain responses were discretized and the waveguide transfer function was obtained through a parametric approach in the z-domain after describing the system with an AutoRegressive with eXogenous input (ARX), as well as with a state-space model. Prior to the identification procedure, filtering was performed in the wavelet domain to minimize both signal distortion, as well as the noise propagating in the ARX and subspace models. The optimal filtering procedure used in the wavelet domain for the recorded time-domain signatures is described in detail. The effect of filtering prior to the identification procedures is elucidated with the aid of pole-zero diagrams. Models derived from measurements of terahertz transients in a precision WR-8 waveguide adjustable short are presented.
Resumo:
The experiment asks whether constancy in hearing precedes or follows grouping. Listeners heard speech-like sounds comprising 8 auditory-filter shaped noise-bands that had temporal envelopes corresponding to those arising in these filters when a speech message is played. The „context‟ words in the message were “next you‟ll get _to click on”, into which a “sir” or “stir” test word was inserted. These test words were from an 11-step continuum that was formed by amplitude modulation. Listeners identified the test words appropriately and quite consistently, even though they had the „robotic‟ quality typical of this type of 8-band speech. The speech-like effects of these sounds appears to be a consequence of auditory grouping. Constancy was assessed by comparing the influence of room reflections on the test word across conditions where the context had either the same level of reflections, or where it had a much lower level. Constancy effects were obtained with these 8-band sounds, but only in „matched‟ conditions, where the room reflections were in the same bands in both the context and the test word. This was not the case in a comparison „mismatched‟ condition, and here, no constancy effects were found. It would appear that this type of constancy in hearing precedes the across-channel grouping whose effects are so apparent in these sounds. This result is discussed in terms of the ubiquity of grouping across different levels of representation.
Resumo:
Perceptual constancy effects are observed when differing amounts of reverberation are applied to a context sentence and a test‐word embedded in it. Adding reverberation to members of a “sir”‐“stir” test‐word continuum causes temporal‐envelope distortion, which has the effect of eliciting more sir responses from listeners. If the same amount of reverberation is also applied to the context sentence, the number of sir responses decreases again, indicating an “extrinsic” compensation for the effects of reverberation. Such a mechanism would effect perceptual constancy of phonetic perception when temporal envelopes vary in reverberation. This experiment asks whether such effects precede or follow grouping. Eight auditory‐filter shaped noise‐bands were modulated with the temporal envelopes that arise when speech is played through these filters. The resulting “gestalt” percept is the appropriate speech rather than the sound of noise‐bands, presumably due to across‐channel “grouping.” These sounds were played to listeners in “matched” conditions, where reverberation was present in the same bands in both context and test‐word, and in “mismatched” conditions, where the bands in which reverberation was added differed between context and test‐word. Constancy effects were obtained in matched conditions, but not in mismatched conditions, indicating that this type of constancy in hearing precedes across‐channel grouping.
Resumo:
The fabrication and characterization of micromachined reduced-height air-filled rectangular waveguide components suitable for integration is reported in this paper. The lithographic technique used permits structures with heights of up to 100 μm to be successfully constructed in a repeatable manner. Waveguide S-parameter measurements at frequencies between 75-110 GHz using a vector network analyzer demonstrate low loss propagation in the TE10 mode reaching 0.2 dB per wavelength. Scanning electron microscope photographs of conventional and micromachined waveguides show that the fabrication technique can provide a superior surface finish than possible with commercially available components. In order to circumvent problems in efficiently coupling free-space propagating beams to the reduced-height G-band waveguides, as well as to characterize them using quasi-optical techniques, a novel integrated micromachined slotted horn antenna has been designed and fabricated, E-, H-, and D-plane far-field antenna pattern measurements at different frequencies using a quasi-optical setup show that the fabricated structures are optimized for 180-GHz operation with an E-plane half-power beamwidth of 32° elevated 35° above the substrate, a symmetrical H-plane pattern with a half-power beamwidth of 23° and a maximum D-plane cross-polar level of -33 dB. Far-field pattern simulations using HFSS show good agreement with experimental results.
Resumo:
The bidimensional periodic structures called frequency selective surfaces have been well investigated because of their filtering properties. Similar to the filters that work at the traditional radiofrequency band, such structures can behave as band-stop or pass-band filters, depending on the elements of the array (patch or aperture, respectively) and can be used for a variety of applications, such as: radomes, dichroic reflectors, waveguide filters, artificial magnetic conductors, microwave absorbers etc. To provide high-performance filtering properties at microwave bands, electromagnetic engineers have investigated various types of periodic structures: reconfigurable frequency selective screens, multilayered selective filters, as well as periodic arrays printed on anisotropic dielectric substrates and composed by fractal elements. In general, there is no closed form solution directly from a given desired frequency response to a corresponding device; thus, the analysis of its scattering characteristics requires the application of rigorous full-wave techniques. Besides that, due to the computational complexity of using a full-wave simulator to evaluate the frequency selective surface scattering variables, many electromagnetic engineers still use trial-and-error process until to achieve a given design criterion. As this procedure is very laborious and human dependent, optimization techniques are required to design practical periodic structures with desired filter specifications. Some authors have been employed neural networks and natural optimization algorithms, such as the genetic algorithms and the particle swarm optimization for the frequency selective surface design and optimization. This work has as objective the accomplishment of a rigorous study about the electromagnetic behavior of the periodic structures, enabling the design of efficient devices applied to microwave band. For this, artificial neural networks are used together with natural optimization techniques, allowing the accurate and efficient investigation of various types of frequency selective surfaces, in a simple and fast manner, becoming a powerful tool for the design and optimization of such structures
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This thesis presents a CMOS Amplifier with High Common Mode rejection designed in UMC 130nm technology. The goal is to achieve a high amplification factor for a wide range of biological signals (with frequencies in the range of 10Hz-1KHz) and to reject the common-mode noise signal. It is here presented a Data Acquisition System, composed of a Delta-Sigma-like Modulator and an antenna, that is the core of a portable low-complexity radio system; the amplifier is designed in order to interface the data acquisition system with a sensor that acquires the electrical signal. The Modulator asynchronously acquires and samples human muscle activity, by sending a Quasi-Digital pattern that encodes the acquired signal. There is only a minor loss of information translating the muscle activity using this pattern, compared to an encoding technique which uses astandard digital signal via Impulse-Radio Ultra-Wide Band (IR-UWB). The biological signals, needed for Electromyographic analysis, have an amplitude of 10-100μV and need to be highly amplified and separated from the overwhelming 50mV common mode noise signal. Various tests of the firmness of the concept are presented, as well the proof that the design works even with different sensors, such as Radiation measurement for Dosimetry studies.
Resumo:
For the past sixty years, waveguide slot radiator arrays have played a critical role in microwave radar and communication systems. They feature a well-characterized antenna element capable of direct integration into a low-loss feed structure with highly developed and inexpensive manufacturing processes. Waveguide slot radiators comprise some of the highest performance—in terms of side-lobe-level, efficiency, etc. — antenna arrays ever constructed. A wealth of information is available in the open literature regarding design procedures for linearly polarized waveguide slots. By contrast, despite their presence in some of the earliest published reports, little has been presented to date on array designs for circularly polarized (CP) waveguide slots. Moreover, that which has been presented features a classic traveling wave, efficiency-reducing beam tilt. This work proposes a unique CP waveguide slot architecture which mitigates these problems and a thorough design procedure employing widely available, modern computational tools. The proposed array topology features simultaneous dual-CP operation with grating-lobe-free, broadside radiation, high aperture efficiency, and good return loss. A traditional X-Slot CP element is employed with the inclusion of a slow wave structure passive phase shifter to ensure broadside radiation without the need for performance-limiting dielectric loading. It is anticipated this technology will be advantageous for upcoming polarimetric radar and Ka-band SatCom systems. The presented design methodology represents a philosophical shift away from traditional waveguide slot radiator design practices. Rather than providing design curves and/or analytical expressions for equivalent circuit models, simple first-order design rules – generated via parametric studies — are presented with the understanding that device optimization and design will be carried out computationally. A unit-cell, S-parameter based approach provides a sufficient reduction of complexity to permit efficient, accurate device design with attention to realistic, application-specific mechanical tolerances. A transparent, start-to-finish example of the design procedure for a linear sub-array at X-Band is presented. Both unit cell and array performance is calculated via finite element method simulations. Results are confirmed via good agreement with finite difference, time domain calculations. Array performance exhibiting grating-lobe-free, broadside-scanned, dual-CP radiation with better than 20 dB return loss and over 75% aperture efficiency is presented.
Resumo:
Magnetic iron garnets as well as magnetic photonic crystals are of great interests in magneto-optic applications such as isolators, current captors, circulators, TE-TM mode conversion, wavelength accordable filters, optical sensors and switches, all of which provide a promising platform for future integrated optical circuits. In the present work, two topics are studied based on magnetic iron garnet films. In the first part, the characteristics of the magnetization are investigated for ridge waveguides fabricated on (100) oriented iron garnet thin films. The magnetic response in magneto-optic waveguides patterned on epitaxial magnetic garnet films depends on the crystallographic orientation of the waveguides and the magnetic anisotropy of the material. These can be studied by polarization rotation hysteresis loops, which are related to the component of magnetization parallel to the light propagation direction and the linear birefringence. Polarization rotation hysteresis loops for low birefringence waveguides with different orientations are experimentally investigated. Asymmetric stepped curves are obtained from waveguides along, due to the large magnetocrystalline anisotropy in the plane. A model based on the free energy density is developed to demonstrate the motion of the magnetization and can be used in the design of magneto-optic devices. The second part of this thesis focuses on the design and fabrication of high-Q cavities in two-dimensional magneto-photonic crystal slabs. The device consists of a layer of silicon and a layer of iron garnet thin film. Triangular lattice elliptical air holes are patterned in the slab. The fundamental TM band gap overlaps with the first-order TE band gap from 0374~0.431(a/λ) showing that both TE and TM polarization light can be confined in the photonic crystals. A nanocavity is designed to obtain both TE and TM defect modes in the band gaps. Additional work is needed to overlap the TE and TM defect modes and obtain a high-Q cavity so as to develop miniaturized Faraday rotators.
Resumo:
The purpose of this study is to explore a Kalman Filter approach to estimating swing of crane-suspended loads. Measuring real-time swing is needed to implement swing damping control strategies where crane joints are used to remove energy from a swinging load. The typical solution to measuring swing uses an inertial sensor attached to the hook block. Measured hook block twist is used to resolve the other two sensed body rates into tangential and radial swing. Uncertainty in the twist measurement leads to inaccurate tangential and radial swing calculations and ineffective swing damping. A typical mitigation approach is to bandpass the inertial sensor readings to remove low frequency drift and high frequency noise. The center frequency of the bandpass filter is usually designed to track the load length and the pass band width set to trade off performance with damping loop gain. The Kalman Filter approach developed here allows all swing motions (radial, tangential and twist) to be measured without the use of a bandpass filter. This provides an alternate solution for swing damping control implementation. After developing a Kalman Filter solution for a two-dimensional swing scenario, the three-dimensional system is considered where simplifying assumptions, suggested by the two-dimensional study, are exploited. One of the interesting aspects of the three-dimensional study is the hook block twist model. Unlike the mass-independence of a pendulum's natural frequency, the twist natural frequency depends both on the pendulum length and the load’s mass distribution. The linear Kalman Filter is applied to experimental data demonstrating the ability to extract the individual swing components for complex motions. It should be noted that the three-dimensional simplifying assumptions preclude the ability to measure two "secondary" hook block rotations. The ability to segregate these motions from the primary swing degrees of freedom was illustrated in the two-dimensional study and could be included into the three-dimensional solution if they were found to be important for a particular application.
Resumo:
Los arrays de ranuras son sistemas de antennas conocidos desde los años 40, principalmente destinados a formar parte de sistemas rádar de navíos de combate y grandes estaciones terrenas donde el tamaño y el peso no eran altamente restrictivos. Con el paso de los años y debido sobre todo a importantes avances en materiales y métodos de fabricación, el rango de aplicaciones de este tipo de sistemas radiantes creció en gran medida. Desde nuevas tecnologías biomédicas, sistemas anticolisión en automóviles y navegación en aviones, enlaces de comunicaciones de alta tasa binaria y corta distancia e incluso sistemas embarcados en satélites para la transmisión de señal de televisión. Dentro de esta familia de antennas, existen dos grupos que destacan por ser los más utilizados: las antennas de placas paralelas con las ranuras distribuidas de forma circular o espiral y las agrupaciones de arrays lineales construidos sobre guia de onda. Continuando con las tareas de investigación desarrolladas durante los últimos años en el Instituto de Tecnología de Tokyo y en el Grupo de Radiación de la Universidad Politécnica de Madrid, la totalidad de esta tesis se centra en este último grupo, aunque como se verá se separa en gran medida de las técnicas de diseño y metodologías convencionales. Los arrays de ranuras rectas y paralelas al eje de la guía rectangular que las alimenta son, sin ninguna duda, los modelos más empleados debido a la fiabilidad que presentan a altas frecuencias, su capacidad para gestionar grandes cantidades de potencia y la sencillez de su diseño y fabricación. Sin embargo, también presentan desventajas como estrecho ancho de banda en pérdidas de retorno y rápida degradación del diagrama de radiación con la frecuencia. Éstas son debidas a la naturaleza resonante de sus elementos radiantes: al perder la resonancia, el sistema global se desajusta y sus prestaciones degeneran. En arrays bidimensionales de slots rectos, el campo eléctrico queda polarizado sobre el plano transversal a las ranuras, correspondiéndose con el plano de altos lóbulos secundarios. Esta tesis tiene como objetivo el desarrollo de un método sistemático de diseño de arrays de ranuras inclinadas y desplazadas del centro (en lo sucesivo “ranuras compuestas”), definido en 1971 como uno de los desafíos a superar dentro del mundo del diseño de antennas. La técnica empleada se basa en el Método de los Momentos, la Teoría de Circuitos y la Teoría de Conexión Aleatoria de Matrices de Dispersión. Al tratarse de un método circuital, la primera parte de la tesis se corresponde con el estudio de la aplicabilidad de las redes equivalentes fundamentales, su capacidad para recrear fenómenos físicos de la ranura, las limitaciones y ventajas que presentan para caracterizar las diferentes configuraciones de slot compuesto. Se profundiza en las diferencias entre las redes en T y en ! y se condiciona la selección de una u otra dependiendo del tipo de elemento radiante. Una vez seleccionado el tipo de red a emplear en el diseño del sistema, se ha desarrollado un algoritmo de cascadeo progresivo desde el puerto alimentador hacia el cortocircuito que termina el modelo. Este algoritmo es independiente del número de elementos, la frecuencia central de funcionamiento, del ángulo de inclinación de las ranuras y de la red equivalente seleccionada (en T o en !). Se basa en definir el diseño del array como un Problema de Satisfacción de Condiciones (en inglés, Constraint Satisfaction Problem) que se resuelve por un método de Búsqueda en Retroceso (Backtracking algorithm). Como resultado devuelve un circuito equivalente del array completo adaptado a su entrada y cuyos elementos consumen una potencia acorde a una distribución de amplitud dada para el array. En toda agrupación de antennas, el acoplo mutuo entre elementos a través del campo radiado representa uno de los principales problemas para el ingeniero y sus efectos perjudican a las prestaciones globales del sistema, tanto en adaptación como en capacidad de radiación. El empleo de circuito equivalente se descartó por la dificultad que suponía la caracterización de estos efectos y su inclusión en la etapa de diseño. En esta tesis doctoral el acoplo también se ha modelado como una red equivalente cuyos elementos son transformadores ideales y admitancias, conectada al conjunto de redes equivalentes que representa el array. Al comparar los resultados estimados en términos de pérdidas de retorno y radiación con aquellos obtenidos a partir de programas comerciales populares como CST Microwave Studio se confirma la validez del método aquí propuesto, el primer método de diseño sistemático de arrays de ranuras compuestos alimentados por guía de onda rectangular. Al tratarse de ranuras no resonantes, el ancho de banda en pérdidas de retorno es mucho mas amplio que el que presentan arrays de slots rectos. Para arrays bidimensionales, el ángulo de inclinación puede ajustarse de manera que el campo quede polarizado en los planos de bajos lóbulos secundarios. Además de simulaciones se han diseñado, construido y medido dos prototipos centrados en la frecuencia de 12GHz, de seis y diez elementos. Las medidas de pérdidas de retorno y diagrama de radiación revelan excelentes resultados, certificando la bondad del método genuino Method of Moments - Forward Matching Procedure desarrollado a lo largo de esta tésis. Abstract The slot antenna arrays are well known systems from the decade of 40s, mainly intended to be part of radar systems of large warships and terrestrial stations where size and weight were not highly restrictive. Over the years, mainly due to significant advances in materials and manufacturing methods, the range of applications of this type of radiating systems grew significantly. From new biomedical technologies, collision avoidance systems in cars and aircraft navigation, short communication links with high bit transfer rate and even embedded systems in satellites for television broadcast. Within this family of antennas, two groups stand out as being the most frequent in the literature: parallel plate antennas with slots placed in a circular or spiral distribution and clusters of waveguide linear arrays. To continue the vast research work carried out during the last decades in the Tokyo Institute of Technology and in the Radiation Group at the Universidad Politécnica de Madrid, this thesis focuses on the latter group, although it represents a technique that drastically breaks with traditional design methodologies. The arrays of slots straight and parallel to the axis of the feeding rectangular waveguide are without a doubt the most used models because of the reliability that they present at high frequencies, its ability to handle large amounts of power and their simplicity of design and manufacturing. However, there also exist disadvantages as narrow bandwidth in return loss and rapid degradation of the radiation pattern with frequency. These are due to the resonant nature of radiating elements: away from the resonance status, the overall system performance and radiation pattern diminish. For two-dimensional arrays of straight slots, the electric field is polarized transverse to the radiators, corresponding to the plane of high side-lobe level. This thesis aims to develop a systematic method of designing arrays of angled and displaced slots (hereinafter "compound slots"), defined in 1971 as one of the challenges to overcome in the world of antenna design. The used technique is based on the Method of Moments, Circuit Theory and the Theory of Scattering Matrices Connection. Being a circuitry-based method, the first part of this dissertation corresponds to the study of the applicability of the basic equivalent networks, their ability to recreate the slot physical phenomena, their limitations and advantages presented to characterize different compound slot configurations. It delves into the differences of T and ! and determines the selection of the most suitable one depending on the type of radiating element. Once the type of network to be used in the system design is selected, a progressive algorithm called Forward Matching Procedure has been developed to connect the proper equivalent networks from the feeder port to shorted ending. This algorithm is independent of the number of elements, the central operating frequency, the angle of inclination of the slots and selected equivalent network (T or ! networks). It is based on the definition of the array design as a Constraint Satisfaction Problem, solved by means of a Backtracking Algorithm. As a result, the method returns an equivalent circuit of the whole array which is matched at its input port and whose elements consume a power according to a given amplitude distribution for the array. In any group of antennas, the mutual coupling between elements through the radiated field represents one of the biggest problems that the engineer faces and its effects are detrimental to the overall performance of the system, both in radiation capabilities and return loss. The employment of an equivalent circuit for the array design was discarded by some authors because of the difficulty involved in the characterization of the coupling effects and their inclusion in the design stage. In this thesis the coupling has also been modeled as an equivalent network whose elements are ideal transformers and admittances connected to the set of equivalent networks that represent the antennas of the array. By comparing the estimated results in terms of return loss and radiation with those obtained from popular commercial software as CST Microwave Studio, the validity of the proposed method is fully confirmed, representing the first method of systematic design of compound-slot arrays fed by rectangular waveguide. Since these slots do not work under the resonant status, the bandwidth in return loss is much wider than the longitudinal-slot arrays. For the case of two-dimensional arrays, the angle of inclination can be adjusted so that the field is polarized at the low side-lobe level plane. Besides the performed full-wave simulations two prototypes of six and ten elements for the X-band have been designed, built and measured, revealing excellent results and agreement with the expected results. These facts certify that the genuine technique Method of Moments - Matching Forward Procedure developed along this thesis is valid and trustable.
Resumo:
It is clear that in the near future much broader transmissions in the HF band will replace part of the current narrow band links. Our personal view is that a real wide band signal is infeasible in this environment because the usage is typically very intensive and may suffer interferences from all over the world. Therefore, we envision that dynamic multiband transmissions may provide better satisfactory performance. From the very beginning, we observed that real links with our broadband transceiver suffered interferences out of our multiband but within the acquisition bandwidth that degrade the expected performance. Therefore, we concluded that a mitigation structure is required that operates on severely saturated signals as the interference may be of much higher power. In this paper we address a procedure based on Higher Order Crossings (HOC) statistics that are able to extract most of the signal structure in the case where the amplitude is severely distorted and allows the estimation of the interference carrier frequency to command a variable notch filter that mitigates its effect in the analog domain.
Resumo:
Leonhardt demonstrated (2009) that the 2D Maxwell Fish Eye lens (MFE) can focus perfectly 2D Helmholtz waves of arbitrary frequency, i.e., it can transport perfectly an outward (monopole) 2D Helmholtz wave field, generated by a point source, towards a "perfect point drain" located at the corresponding image point. Moreover, a prototype with λ/5 superresolution (SR) property for one microwave frequency has been manufactured and tested (Ma et al, 2010). Although this prototype has been loaded with an impedance different from the "perfect point drain", it has shown super-resolution property. However, neither software simulations nor experimental measurements for a broad band of frequencies have yet been reported. Here we present steady state simulations for two cases, using perfect drain as suggested by Leonhardt and without perfect drain as in the prototype. All the simulations have been done using a device equivalent to the MFE, called the Spherical Geodesic Waveguide (SGW). The results show the super-resolution up to λ/3000, for the system loaded with the perfect drain, and up to λ/500 for a not perfect load. In both cases super-resolution only happens for discrete number of frequencies. Out of these frequencies, the SGW does not show super-resolution in the analysis carried out.
Resumo:
This paper presents the design and characterization process of an active array demonstrator for the mid-frequency range (i.e., 300 MHz-1000 MHz) of the future Square Kilometre Array (SKA) radio telescope. This demonstrator, called FIDA3 (FG-IGN: Fundación General Instituto Geográfico Nacional - Differential Active Antenna Array), is part of the Spanish contribution for the SKA project. The main advantages provided by this design include the use of a dielectric-free structure, and the use of a fully-differential receiver in which differential low-noise amplifiers (LNAs) are directly connected to the balanced tapered-slot antennas (TSAs). First, the radiating structure and the differential low-noise amplifiers were separately designed and measured, obtaining good results (antenna elements with low voltage standing-wave ratios, array scanning capabilities up to 45°, and noise temperatures better than 52 K with low-noise amplifiers at room temperature). The potential problems due to the differential nature of the proposed solution are discussed, so some effective methods to overcome such limitations are proposed. Second, the complete active antenna array receiving system was assembled, and a 1 m2 active antenna array tile was characterized.