983 resultados para water flux
Resumo:
Water scarcity is a global issue that has already affected every continent. Membrane technology is considered as one of the most promising candidates for resolving this worsening issue. Among all the membrane processes, the emerging forward osmosis (FO) membrane process is osmotically-driven and has unique advantages compared with other traditional pressure-driven membrane processes. One of the major challenges to advancing the FO membrane process is the lack of a suitable membrane. Polyelectrolyte thin film prepared via layer-by-layer (LbL) technique has demonstrated its excellent performance in many applications including electronics, optics, sensors, etc. Recent studies have revealed the potential of polyelectrolyte thin films in acting as the active separation layer of FO membranes, but significant efforts are still needed to improve the membrane performance and understand the transport mechanisms. This dissertation introduces a novel approach to prepare a zeolite-embedded polyelectrolyte composite membrane for enhanced FO performance. This membrane takes advantages of the versatile LbL process to unprecedentedly incorporate high loading of zeolite nanoparticles, which are anticipated to facilitate water transport due to the uniquely interconnected structure of zeolites. Major topics discussed in this dissertation include: (1) the synthesis and evaluation of the polyelectrolyte-zeolite composite FO membrane, (2) the examination of the fouling resistance to identify its technical limitations, (3) the demonstration of the membrane regenerability as an effective strategy for membrane fouling control, and (4) the investigation of crosslinking effects on the membrane performance to elucidate the transport mechanisms involved in the zeolite-embedded polyelectrolyte membranes. Comparative studies have been made between polyelectrolyte membranes with and without zeolite incorporation. The findings suggest that the zeolite-embedded membrane, although slightly more susceptible to silica scaling, has demonstrated enhanced water flux and separation capability, good resistance to organic fouling, and complete regenerability for fouling control. Additionally, the embedded zeolite nanoparticles are proved to be able to create fast pathways for water transport. Overall, this work provides a novel strategy to create zeolite-polymer composite membranes with enhanced separation performance and unique fouling mitigation properties.
Resumo:
Tämän työn tavoitteena oli selvittää, kuinka selluloosan lisääminen vaikuttaa polysulfonirunkoisiin membraaneihin. Lisäksi työssä selvitettiin selluloosamembraanien modifiointia kitosaanilla ja bentoniitilla. Työssä muodostettiin membraanit faasi-inversiotekniikalla. Selluloosamembraanien valmistuksessa jauhettu selluloosa liuotettiin ioniseen nesteeseen. Sekä polysulfonista että selluloosasta valmistetuille membraaneille määritettiin puhdasvesivuot ja retentiot. Retention määrittämiseen käytettiin malliaineena dekstraanin vesiliuosta. Lisäksi määriteltiin polysulfonipohjaisten membraanien hydrofiilisyys tutkimalla membraanien pintojen ja vesipisaroiden välisiä kontaktikulmia. Polysulfonimembraaneihin lisätyn selluloosan havaittiin pienentävän puhdasvesivuota ja kasvattavan hydrofiilisyyttä mitä enemmän selluloosaa oli membraanimatriisissa. Kaikkien selluloosalla modifioitujen membraanien retentiot olivat suurempia kuin modifioimattoman polysulfonimembraanin. Kitosaanilla modifioitujen selluloosamembraanien valmistus ei onnistunut johtuen luultavasti kitosaanin liian suuresta partikkelikoosta. Bentoniitilla modifioitujen membraanien vuot olivat merkittävästi suuremmat sekä niiden retentiot pienemmät verrattuna modifioimattomaan selluloosamembraaniin. Tämä johtui luultavasti siitä, että bentoniitin lisääminen aiheutti membraanirakenteeseen reikiä.
Resumo:
This thesis describes the modification of the commercial TFC-S nanofiltration membrane with shape-persistent dendritic architectures. Amphiphilic aromatic polyamide dendrimers (G1-G3) are synthesized via a divergent approach and used for membrane modification by direct percolation. The permeate samples collected from the percolation experiments are analyzed by UV-Vis spectroscopy to instantly monitor the influence of dendrimer generations on percolation behaviors and new active layer formation. The membrane structures are further characterized by Rutherford backscattering spectrometry (RBS) and atomic force microscopy (AFM) techniques, suggesting a low-level accumulation of dendrimers inside the TFC-S NF membranes and subsequent formation of an additional aramide dendrimer active layer. Thus, all the modified TFC-S membranes have a double active layer structure. A PES-PVA film is used as a control membrane showing that structural compatibility between the dendrimer and supports plays an important role in the membrane modification process. The performance of modified TFC-S membrane is evaluated on the basis of rejection abilities of a variety of water contaminants having a range of sizes and chemistry. As the water flux is inversely proportional to the thickness of the active layer, we optimize the amount of dendrimers deposited for specific contaminants to improve the solute rejection while maintaining high water flux.
Resumo:
An 18-year time series of daily sea surface temperature of Gulf of Cadiz and an 18-month time series of temperature collected in the vicinity of the Guadalquivir estuary mouth have been analyzed to investigate the heat exchange between the estuary and the adjacent continental shelf. The first time identifies a continental shelf area where seasonal thermal oscillation signal (amplitudes and phase) changes abruptly. In order to explain this anomaly, the second data set allows a description of thermal fluctuations in a wide range of frequencies and an estimation of the upstream heat budget of the Guadalquivir estuary. Results show that high frequency thermal signal, diurnal and semidiurnal, and water flux signal through Guadalquivir mouth, mainly semidiurnal, apparently interact randomly to give a small exchange of thermal energy at high frequency. There is no trace, at the estuary's mouth, of daily heat exchanges with intertidal mudflats probably because it tends to cancel on daily time scales. Results also show that fluctuations of estimated air-sea fluxes force fluctuations of temperature in a quite homogeneous estuarine, with a delay of 20 days. The along-channel thermal energy gradient reaches magnitudes of 300-400 J m-4 near the mouth during the summer and winter and drives the estuary-shelf exchange of thermal energy at seasonal scale. Particularly, the thermal heat imported by the estuary from the shelf area during late fall-winter-early spring of 2008/2009 is balanced by the thermal heat that the estuary exports to the shelf area during late spring-summer of 2008. In summary, Guadalquivir river removes/imports excess of thermal energy towards/from the continental shelf seasonally, as a mechanism to accommodate excess of heat from one side respect to the other side.
Resumo:
The field observation of this study was carried out in the Changjiang Estuary from May 19 to 26,2003, just a few days before the Three Gorges Dam began to store water. A total of 29 stations, including 2 anchor stations, were distributed through almost the whole salinity gradient Based on the data gained from these stations, the biogeochemical characteristics of dissolved oxygen (DO) were examined. Spatial distribution of DO concentrations showed the pattern that it increased in a downriver direction. DO concentration generally varied within a narrow range of 733-8.10 mg l(-1) in the freshwater region and the west part of the mixed water region, and after that it increased rapidly. In vertical direction, the differences in DO concentrations between surface and 2 m above the bottom were big at the stations with water depths exceeding 20 m; DO concentration up to 14.88 mg l(-1) was recorded at the sea surface, while at 2 m above the bottom its concentration was only about 4 mg l(-1). The fluctuation in DO concentrations was small during a period of 48 h in the mixed water region and 2 m above the bottom of the seawater region; while it was large during the same period in the seawater region for surface and 5 m below the surface layer, and a maximum variation from 8.77 to 12.66 mg l(-1) in 4 h was recorded. Oxygen fluxes also showed a marked spatio-temporal variation. As a whole, the freshwater region and mixed water region were an oxygen sink while the seawater region was a source. Relationships between dissolved oxygen and some biogeochemical parameters which could markedly influence its spatio-temporal distribution were discussed in this paper. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The Integrated Environmental Monitoring (IEM) project, part of the Asia-Pacific Environmental Innovation Strategy (APEIS) project, developed an integrated environmental monitoring system that can be used to detect, monitor, and assess environmental disasters, degradation, and their impacts in the Asia-Pacific region. The system primarily employs data from the moderate resolution imaging spectrometer (MODIS) sensor on the Earth Observation System- (EOS-) Terra/Aqua satellite,as well as those from ground observations at five sites in different ecological systems in China. From the preliminary data analysis on both annual and daily variations of water, heat and CO2 fluxes, we can confirm that this system basically has been working well. The results show that both latent flux and CO2 flux are much greater in the crop field than those in the grassland and the saline desert, whereas the sensible heat flux shows the opposite trend. Different data products from MODIS have very different correspondence, e.g. MODIS-derived land surface temperature has a close correlation with measured ones, but LAI and NPP are quite different from ground measurements, which suggests that the algorithms used to process MODIS data need to be revised by using the local dataset. We are now using the APEIS-FLUX data to develop an integrated model, which can simulate the regional water,heat, and carbon fluxes. Finally, we are expected to use this model to develop more precise high-order MODIS products in Asia-Pacific region.
Resumo:
We investigated the seasonal patterns of water vapor and sensible heat flux along a tropical biome gradient from forest to savanna. We analyzed data from a network of flux towers in Brazil that were operated within the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA). These tower sites included tropical humid and semideciduous forest, transitional forest, floodplain (with physiognomies of cerrado), and cerrado sensu stricto. The mean annual sensible heat flux at all sites ranged from 20 to 38 Wm(-2), and was generally reduced in the wet season and increased in the late dry season, coincident with seasonal variations of net radiation and soil moisture. The sites were easily divisible into two functional groups based on the seasonality of evaporation: tropical forest and savanna. At sites with an annual precipitation above 1900 mm and a dry season length less than 4 months (Manaus, Santarem and Rondonia), evaporation rates increased in the dry season, coincident with increased radiation. Evaporation rates were as high as 4.0 mm d(-1) in these evergreen or semidecidous forests. In contrast, ecosystems with precipitation less than 1700 mm and a longer dry season (Mato Grosso, Tocantins and Sao Paulo) showed clear evidence of reduced evaporation in the dry season. Evaporation rates were as low as 2.5 mm d(-1) in the transitional forests and 1 mm d(-1) in the cerrado. The controls on evapotranspiration seasonality changed along the biome gradient, with evaporative demand (especially net radiation) playing a more important role in the wetter forests, and soil moisture playing a more important role in the drier savannah sites.
Resumo:
Trabajo realizado por: Packard, T. T., Osma, N., Fernández Urruzola, I., Gómez, M
Resumo:
The water budget approach is applied to an atmospheric box above Switzerland (hereafter referred to as the “Swiss box”) to quantify the atmospheric water vapour flux using ECMWF ERA-Interim reanalyses. The results confirm that the water vapour flux through the Swiss box is highly temporally variable, ranging from 1 to 5 · 107 kg/s during settled anticyclonic weather, but increasing in size by a factor of ten or more during high speed currents of water vapour. Overall, Switzerland and the Swiss box “import” more water vapour than it “exports”, but the amount gained remains only a small fraction (1% to 5%) of the total available water vapour passing by. High inward water vapour fluxes are not necessarily linked to high precipitation episodes. The water vapour flux during the August 2005 floods, which caused severe damage in central Switzerland, is examined and an assessment is made of the computed water vapour fluxes compared to high spatio-temporal rain gauge and radar observations. About 25% of the incoming water vapour flux was stored in Switzerland. The computed water vapour fluxes from ECMWF data compare well with the mean rain gauge observations and the combined rain-gauge radar precipitation products.