973 resultados para wasp venom toxins
Resumo:
Many potent antimicrobial peptides also present hemolytic activity, an undesired collateral effect for the therapeutic application. Unlike other mastoparan peptides, Polybia-MP1 (IDWKKLLDAAKQIL), obtained from the venom of the social wasp Polybia paulista, is highly selective of bacterial cells. The study of its mechanism of action demonstrated that it permeates vesicles at a greater rate of leakage on the anionic over the zwitterionic, impaired by the presence of cholesterol or cardiolipin; its lytic activity is characterized by a threshold peptide to lipid molar ratio that depends on the phospholipid composition of the vesicles. At these particular threshold concentrations, the apparent average pore number is distinctive between anionic and zwitterionic vesicles, suggesting that pores are similarly formed depending on the ionic character of the bilayer. To prospect the molecular reasons for the strengthened selectivity in Polybia-MP1 and its absence in Mastoparan-X, MD simulations were carried out. Both peptides presented amphipathic alpha-helical structures, as previously observed in Circular Dichroism spectra, with important differences in the extension and stability of the helix; their backbone solvation analysis also indicate a different profile, suggesting that the selectivity of Polybia-MP1 is a consequence of the distribution of the charged and polar residues along the peptide helix, and on how the solvent molecules orient themselves according to these electrostatic interactions. We suggest that the lack of hemolytic activity of Polybia-MP1 is due to the presence and position of Asp residues that enable the equilibrium of electrostatic interactions and favor the preference for the more hydrophilic environment.
Resumo:
Anoplin, an antimicrobial, helical decapeptide from wasp venom, looses its biological activities by mere deamidation of its C-terminus. Secondary structure determination, by circular dichroism spectroscopy in amphipathic environments, and lytic activity in zwitterionic and anionic vesicles showed quite similar results for the amidated and the carboxylated forms of the peptide. The deamidation of the C-terminus introduced a negative charge at an all-positive charged peptide, causing a loss of amphipathicity, as indicated by molecular dynamics simulations in TFE/water mixtures and this subtle modification in a peptide's primary structure disturbed the interaction with bilayers and biological membranes. Although being poorly lytic, the amidated form, but not the carboxylated, presented ion channel-like activity on anionic bilayers with a well-defined conductance step; at approximately the same concentration it showed antimicrobial activity. The pores remain open at trans-negative potentials, preferentially conducting cations, and this situation is equivalent to the interaction of the peptide with bacterial membranes that also maintain a high negative potential inside. Copyright (C) 2007 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
A novel chemical subclass of toxin, [1-(3-diazenylphenyl) ethanol]iron, was identified among the compounds present in the web of the spider Nephila clavipes. This type of compound is not common among natural products, mainly in spider-venom toxins; it was shown to be a potent paralytic and/or lethal toxin applied by the spider over its web to ensure prey capture only by topical application. The structure was elucidated by means of ESI mass spectrometry, H-1-NMR spectroscopy, high-resolution (HR) mass spectrometry, and ICP spectrometry. The structure of [1-( 3-diazenylphenyl)ethanol] iron and the study of its insecticidal action may be used as a starting point for the development of new drugs for pest control in agriculture.
Resumo:
Honey bee venom toxins trigger immunological, physiological, and neurological responses within victims. The high occurrence of bee attacks involving potentially fatal toxic and allergic reactions in humans and the prospect of developing novel pharmaceuticals make honey bee venom an attractive target for proteomic studies. Using label-free quantification, we compared the proteome and phosphoproteome of the venom of Africanized honeybees with that of two European subspecies, namely Apis mellifera ligustica and A. m. carnica. From the total of 51 proteins, 42 were common to all three subspecies. Remarkably, the toxins melittin and icarapin were phosphorylated. In all venoms, icarapin was phosphorylated at the 205Ser residue, which is located in close proximity to its known antigenic site. Melittin, the major toxin of honeybee venoms, was phosphorylated in all venoms at the 10Thr and 18Ser residues. 18Ser phosphorylated melittin-the major of its two phosphorylated forms-was less toxic compared to the native peptide. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC
Resumo:
Pós-graduação em Ciências Biológicas (Zoologia) - IBRC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)