913 resultados para walled carbon nanotubes
Resumo:
Multiwalled carbon nanotubes display dielectric properties similar to those of graphite, which can be calculated using the well known Drude-Lorentz model. However, most computational softwares lack the capacity to directly incorporate this model into the simulations. We present the finite element modeling of optical propagation through periodic arrays of multiwalled carbon nanotubes. The dielectric function of nanotubes was incorporated into the model by using polynomial curve fitting technique. The computational analysis revealed interesting metamaterial filtering effects displayed by the highly dense square lattice arrays of carbon nanotubes, having lattice constants of the order few hundred nanometers. The curve fitting results for the dielectric function can also be used for simulating other interesting optical applications based on nanotube arrays.
Growth and characterisation of high-density mats of single-walled carbon nanotubes for interconnects
Resumo:
Field emission properties of single-walled carbon nanotubes (SWCNTs), which were prepared through alcohol catalytic chemical vapor deposition for 10-60s, were characterized in a diode configuration. Protrusive bundles at the top surface of samples act selectively as emission sites. The number of emission sites was controlled by emitter morphologies combined with texturing of Si substrates. SWCNTs grown on a textured Si substrate exhibited a turn-on field as low as 2.4 V/μm at a field emission current density of 1 μA/cm 2. Uniform spatial luminescence (0.5 cm2) from the rear surface of the anode was revealed for SWCNTs prepared on the textured Si substrate. Deterioration of field emission properties through repetitive measurements was reduced for the textured samples in comparison with vertically aligned SWCNTs and a random network of SWCNTs prepared on flat Si substrates. Emitter morphology resulting in improved field emission properties is a crucial factor for the fabrication of SWCNT-electron sources. Morphologically controlled SWCNTs with promising emitter performance are expected to be practical electron sources. © 2008 The Japan Society of Applied Physics.
Resumo:
We report on the growth of single-walled carbon nanotubes from a monometallic Co catalyst on an oxidized Si wafer support by the most simple growth recipe (vacuum annealing, growth by undiluted C 2H 2). Nevertheless, multiwavelength Raman spectroscopy and transmission electron spectroscopy show a remarkable selectivity for chiral indices and thus, e.g., high abundance with a single chirality representing 58% of all semiconducting tubes. In situ x-ray photoelectron spectroscopy monitors the catalyst chemistry during carbon nanotube growth and shows interfacial Co-Si interactions that may help to stabilize the nanoparticle/nanotube diameter. We outline a two-mechanism model explaining the selective growth. © 2012 American Physical Society.
Resumo:
Tantalum-oxide thin films are shown to catalyse single- and multi-walled carbon nanotube growth by chemical vapour deposition. A low film thickness, the nature of the support material (best results with SiO
Resumo:
High-resolution time resolved transmittivity measurements on horizontally aligned free-standing multi-walled carbon nanotubes reveal a different electronic transient behavior from that of graphite. This difference is ascribed to the presence of discrete energy states in the multishell carbon nanotube electronic structure. Probe polarization dependence suggests that the optical transitions involve definite selection rules. The origin of these states is discussed and a rate equation model is proposed to rationalize our findings. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
We show that catalyst pretreatment conditions can have a profound effect on the chiral distribution in single-walled carbon nanotube chemical vapor deposition. Using a SiO2-supported cobalt model catalyst and pretreatment in NH3, we obtain a comparably narrowed chiral distribution with a downshifted tube diameter range, independent of the hydrocarbon source. Our findings demonstrate that the state of the catalyst at the point of carbon nanotube nucleation is of fundamental importance for chiral control, thus identifying the pretreatment atmosphere as a key parameter for control of diameter and chirality distributions. © 2014 American Chemical Society.
Resumo:
In this paper, we propose a lattice dynamic treatment for the total potential energy of single-walled carbon nanotubes (SWCNTs) which is, apart from a parameter for the nonlinear effects, extracted from the vibrational energy of the planar graphene sheet. The energetics, elasticity and lattice dynamics are treated in terms of the same set of force constants, independently of the tube structures. Based upon this proposal, we have investigated systematically the relaxed lattice configuration for narrow SWCNTs, the strain energy, the Young's modulus and Poisson ratio, and the lattice vibrational properties with respect to the relaxed equilibrium tubule structure. Our calculated results for various physical quantities are nicely in consistency with existing experimental measurements. In particular, we verified that the relaxation effect makes the bond length longer and the frequencies of various optical vibrational modes softer. Our calculation provides evidence that the Young's modulus of an armchair tube exceeds that of the planar graphene sheet, and that the large diameter limits of the Young's modulus and Poisson ratio are in agreement with the experimental values of graphite; the calculated radial breathing modes for ultra-narrow tubes with diameters ranging between 2 and 5 angstrom coincide with the experimental results and the existing ab initio calculations with satisfaction. For narrow tubes with a diameter of 20 angstrom, the calculated frequencies of optical modes in the tubule's tangential plane, as well as those of radial breathing modes, are also in good agreement with the experimental measurements. In addition, our calculation shows that various physical quantities of relaxed SWCNTs can actually be expanded in terms of the chiral angle defined for the corresponding ideal SWCNTs.
Resumo:
Through floating catalyst chemical vapour deposition(CVD) method, well-aligned isolated single-walled carbon nanotubes (SWCNTs) and their bundles were deposited on the metal electrodes patterned on the SiO2/Si surface under ac electric fields at relatively low temperature(280 degrees C). It was indicated that SWCNTs were effectively aligned under ac electric fields after they had just grown in the furnace. The time for a SWCNT to be aligned in the electric field and the effect of gas flow were estimated. Polarized Raman scattering was performed to characterize the aligned structure of SWCNTs. This method would be very useful for the controlled fabrication and preparation of SWCNTs in practical applications.
Resumo:
In this paper, we developed a new kind of substrate, the silver-coated anodic aluminum oxide (AAO), to investigate the characters of surface-enhanced resonant Raman scattering (SERRS) of the dilute single-walled carbon nanotubes. Homogeneous Ag-coated AAO substrate was obtained by decomposing the AgNO3 on the surface of AAO. single-walled carbon nanotubes (SWNTs) were directly grown onto this substrate through floating catalyst chemical vapor deposition method (CVD). SERRS of SWNTs was carried out using several different wavelength lasers. The bands coming from metallic SWNTs were significantly enhanced. The two SERRS mechanisms, the "electromagnetic" and "chemical" mechanism, were mainly responsible for the experiment results. (c) 2005 Elsevier B.V. All rights reserved.