921 resultados para vorticity contour visualization
Resumo:
We introduce a variation density function that profiles the relationship between multiple scalar fields over isosurfaces of a given scalar field. This profile serves as a valuable tool for multifield data exploration because it provides the user with cues to identify interesting isovalues of scalar fields. Existing isosurface-based techniques for scalar data exploration like Reeb graphs, contour spectra, isosurface statistics, etc., study a scalar field in isolation. We argue that the identification of interesting isovalues in a multifield data set should necessarily be based on the interaction between the different fields. We demonstrate the effectiveness of our approach by applying it to explore data from a wide variety of applications.
Resumo:
The flow over a missile-shaped configuration is investigated by means of Schlieren visualization in short-duration facility producing free stream Mach numbers of 5.75 and 8. This visualization technique is demonstrated with a 41 degrees full apex angle blunt cone missile-shaped body mounted with and without cavity. Experiments are carried out with air as the test gas to visualize the flow field. The experimental results show a strong intensity variation in the deflection of light in a flow field, due to the flow compressibility. Shock stand-off distance measured with the Schlieren method is in good agreement with theory and computational fluid dynamic study for both the configurations. Magnitude of the shock oscillation for a cavity model may be greater than the case of a model without cavity. The picture of visualization shows that there is an outgoing and incoming flow closer to the cavity. Cavity flow oscillation was found to subside to steady flow with a decrease in the free stream Mach number.
Resumo:
In this article we describe and demonstrate the versatility of a computer program, GENOME MAPPING, that uses interactive graphics and runs on an IRIS workstation. The program helps to visualize as well as analyse global and local patterns of genomic DNA sequences. It was developed keeping in mind the requirements of the human genome sequencing programme, which requires rapid analysis of the data. Using GENOME MAPPING one can discern signature patterns of different kinds of sequences and analyse such patterns for repetitive as well as rare sequence strings. Further, one can visualize the extent of global homology between different genomic sequences. An application of our method to the published yeast mitochondrial genome data shows similar sequence organizations in the entire sequence and in smaller subsequences.
Resumo:
Visualization of fluids has wide applications in science, engineering and entertainment. Various methodologies Of visualizing fluids have evolved which emphasize on capturing different aspects of the fluids accurately. In this survey the existing methods for realistic visualization of fluids are reviewed. The approaches are classified based on the key concept they rely on for fluid modeling. This classification allows for easy selection of the method to be adopted for visualization given an application. It also enables identification of alternative techniques for fluid modeling.
Resumo:
Study of symmetric or repeating patterns in scalar fields is important in scientific data analysis because it gives deep insights into the properties of the underlying phenomenon. Though geometric symmetry has been well studied within areas like shape processing, identifying symmetry in scalar fields has remained largely unexplored due to the high computational cost of the associated algorithms. We propose a computationally efficient algorithm for detecting symmetric patterns in a scalar field distribution by analysing the topology of level sets of the scalar field. Our algorithm computes the contour tree of a given scalar field and identifies subtrees that are similar. We define a robust similarity measure for comparing subtrees of the contour tree and use it to group similar subtrees together. Regions of the domain corresponding to subtrees that belong to a common group are extracted and reported to be symmetric. Identifying symmetry in scalar fields finds applications in visualization, data exploration, and feature detection. We describe two applications in detail: symmetry-aware transfer function design and symmetry-aware isosurface extraction.
Resumo:
In this paper, we explore a novel idea of using high dynamic range (HDR) technology for uncertainty visualization. We focus on scalar volumetric data sets where every data point is associated with scalar uncertainty. We design a transfer function that maps each data point to a color in HDR space. The luminance component of the color is exploited to capture uncertainty. We modify existing tone mapping techniques and suitably integrate them with volume ray casting to obtain a low dynamic range (LDR) image. The resulting image is displayed on a conventional 8-bits-per-channel display device. The usage of HDR mapping reveals fine details in uncertainty distribution and enables the users to interactively study the data in the context of corresponding uncertainty information. We demonstrate the utility of our method and evaluate the results using data sets from ocean modeling.
Resumo:
The present paper discusses the flow visualization for turbulent free convection in a tank of water with the bottom surface being a smooth or a grooved surface and the top of the water surface exposed to ambient. The grooved surface is of parallel 90 degrees V-grooves with groove height of 10 mm and groove width of 20 mm. The experiment is carried out with aspect ratio (AR) of 2.9 and Rayleigh number (Ra) in the range, 1.3 x 10(7) - 4 x 10(7). Here AR is the aspect ratio (= width of fluid layer/height of fluid layer). Heat flux at the bottom surface is from electrical heating. From the pH-dye visualization, interesting flow structures are observed and these structures are analyzed with the help of plumes dynamics and temperature variations with time. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Critical applications like cyclone tracking and earthquake modeling require simultaneous high-performance simulations and online visualization for timely analysis. Faster simulations and simultaneous visualization enable scientists provide real-time guidance to decision makers. In this work, we have developed an integrated user-driven and automated steering framework that simultaneously performs numerical simulations and efficient online remote visualization of critical weather applications in resource-constrained environments. It considers application dynamics like the criticality of the application and resource dynamics like the storage space, network bandwidth and available number of processors to adapt various application and resource parameters like simulation resolution, simulation rate and the frequency of visualization. We formulate the problem of finding an optimal set of simulation parameters as a linear programming problem. This leads to 30% higher simulation rate and 25-50% lesser storage consumption than a naive greedy approach. The framework also provides the user control over various application parameters like region of interest and simulation resolution. We have also devised an adaptive algorithm to reduce the lag between the simulation and visualization times. Using experiments with different network bandwidths, we find that our adaptive algorithm is able to reduce lag as well as visualize the most representative frames.
Resumo:
Western Blot analysis is an analytical technique used in Molecular Biology, Biochemistry, Immunogenetics and other Molecular Biology studies to separate proteins by electrophoresis. The procedure results in images containing nearly rectangular-shaped blots. In this paper, we address the problem of quantitation of the blots using automated image processing techniques. We formulate a special active contour (or snake) called Oblong, which locks on to rectangular shaped objects. Oblongs depend on five free parameters, which is also the minimum number of parameters required for a unique characterization. Unlike many snake formulations, Oblongs do not require explicit gradient computations and therefore the optimization is carried out fast. The performance of Oblongs is assessed on synthesized data and Western Blot Analysis images.
Resumo:
Adaptive Mesh Refinement is a method which dynamically varies the spatio-temporal resolution of localized mesh regions in numerical simulations, based on the strength of the solution features. In-situ visualization plays an important role for analyzing the time evolving characteristics of the domain structures. Continuous visualization of the output data for various timesteps results in a better study of the underlying domain and the model used for simulating the domain. In this paper, we develop strategies for continuous online visualization of time evolving data for AMR applications executed on GPUs. We reorder the meshes for computations on the GPU based on the users input related to the subdomain that he wants to visualize. This makes the data available for visualization at a faster rate. We then perform asynchronous executions of the visualization steps and fix-up operations on the CPUs while the GPU advances the solution. By performing experiments on Tesla S1070 and Fermi C2070 clusters, we found that our strategies result in 60% improvement in response time and 16% improvement in the rate of visualization of frames over the existing strategy of performing fix-ups and visualization at the end of the timesteps.