975 resultados para von Hippel-Lindau disease
Resumo:
Stereotypes about different groups persist in organizations. Employees from such groups may experience stereotype threat, or the concern that they are being judged on the basis of demeaning stereotypes about groups to which they belong. The goal of this focal article is to discuss whether stereotype threat is a useful construct for organizational psychology research and practice. To this end, we focus on consequences other than acute performance deficits in laboratory settings. In particular, we examine studies that highlight the effects of stereotype threat on intrapersonal outcomes (e.g., job attitudes), interpersonal outcomes (e.g., negotiation), and on the relationship between employees and their organization. The research reviewed suggests that stereotype threat is a potentially important phenomenon in organizations, but it also highlights the paucity of research in an organizational context. We provide suggestions for future research directions as well as for the prevention and amelioration of stereotype threat in the workplace.
Resumo:
We have examined the binding processes of ethidium bromide interacting with calf thymus DNA using photoacoustic spectroscopy. These binding processes are generally investigated by a combination of absorption or fluorescence spectroscopies with hydrodynamic techniques. The employment of photoacoustic spectroscopy for the DNA-ethidium bromide system identified two binding manners for the dye. The presence of two isosbestic points (522 and 498 nm) during DNA titration was evidence of these binding modes. Analysis of the photoacoustic amplitude signal data was performed using the McGhee-von Hippel excluded site model. The binding constant obtained was 3.4 x 10(8) M(bp)(-1), and the number of base pairs excluded to another dye molecule by each bound dye molecule (n) was 2. A DNA drug dissociation process was applied using sodium dodecyl sulfate to elucidate the existence of a second and weaker binding mode. The dissociation constant determined was 0.43 mM, whose inverse value was less than the previously obtained binding constant, demonstrating the existence of the weaker binding mode. The calculated binding constant was adjusted by considering the dissociation constant and its new value was 1.2 x 10(9) M(bp)(-1) and the number of excluded sites was 2.6. Using the photoacoustic technique it is also possible to obtain results regarding the dependence of the quantum yield of the dye on its binding mode. While intercalated between two adjacent base pairs the quantum yield found was 0.87 and when associated with an external site it was 0.04. These results reinforce the presence of these two binding processes and show that photoacoustic spectroscopy is more extensive than commonly applied spectroscopies.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Von G. Lindau
Resumo:
Von G. Lindau
Resumo:
Von G. Lindau
Resumo:
The replication system of bacteriophage T4 uses a trimeric ring-shaped processivity clamp (gp45) to tether the replication polymerase (gp43) to the template-primer DNA. This ring is placed onto the DNA by an ATPase-driven clamp-loading complex (gp44/62) where it then transfers, in closed form, to the polymerase. It generally has been assumed that one of the functions of the loading machinery is to open the clamp to place it around the DNA. However, the mechanism by which this occurs has not been fully defined. In this study we design and characterize a double-mutant gp45 protein that contains pairs of cysteine residues located at each monomer-monomer interface of the trimeric clamp. This mutant protein is functionally equivalent to wild-type gp45. However, when all three monomer-monomer interfaces are tethered by covalent crosslinks formed (reversibly or irreversibly) between the cysteine pairs these closed clamps can no longer be loaded onto the DNA nor onto the polymerase, effectively eliminating processive strand-displacement DNA synthesis. Analysis of the individual steps of the clamp-loading process shows that the ATPase-dependent interactions between the clamp and the clamp loader that precede DNA binding are hyperstimulated by the covalently crosslinked ring, suggesting that binding of the closed ring induces a futile, ATP-driven, ring-opening cycle. These findings and others permit further characterization and ordering of the steps involved in the T4 clamp-loading process.
Resumo:
We have developed a coupled helicase–polymerase DNA unwinding assay and have used it to monitor the rate of double-stranded DNA unwinding catalyzed by the phage T4 DNA replication helicase (gp41). This procedure can be used to follow helicase activity in subpopulations in systems in which the unwinding-synthesis reaction is not synchronized on all the substrate-template molecules. We show that T4 replication helicase (gp41) and polymerase (gp43) can be assembled onto a loading site located near the end of a long double-stranded DNA template in the presence of a macromolecular crowding agent, and that this coupled “two-protein” system can carry out ATP-dependent strand displacement DNA synthesis at physiological rates (400 to 500 bp per sec) and with high processivity in the absence of other T4 DNA replication proteins. These results suggest that a direct helicase–polymerase interaction may be central to fast and processive double-stranded DNA replication, and lead us to reconsider the roles of the other replication proteins in processivity control.
Resumo:
Several models have been proposed for the mechanism of transcript termination by Escherichia coli RNA polymerase at rho-independent terminators. Yager and von Hippel (Yager, T. D. & von Hippel, P. H. (1991) Biochemistry 30, 1097–118) postulated that the transcription complex is stabilized by enzyme–nucleic acid interactions and the favorable free energy of a 12-bp RNA–DNA hybrid but is destabilized by the free energy required to maintain an extended transcription bubble. Termination, by their model, is viewed simply as displacement of the RNA transcript from the hybrid helix by reformation of the DNA helix. We have proposed an alternative model where the RNA transcript is stably bound to RNA polymerase primarily through interactions with two single-strand specific RNA-binding sites; termination is triggered by formation of an RNA hairpin that reduces binding of the RNA to one RNA-binding site and, ultimately, leads to its ejection from the complex. To distinguish between these models, we have tested whether E. coli RNA polymerase can terminate transcription at rho-independent terminators on single-stranded DNA. RNA polymerase cannot form a transcription bubble on these templates; thus, the Yager–von Hippel model predicts that intrinsic termination will not occur. We find that transcript elongation on single-stranded DNA templates is hindered somewhat by DNA secondary structure. However, E. coli RNA polymerase efficiently terminates and releases transcripts at several rho-independent terminators on such templates at the same positions as termination occurs on duplex DNAs. Therefore, neither the nontranscribed DNA strand nor the transcription bubble is essential for rho-independent termination by E. coli RNA polymerase.
Resumo:
The theory of stochastic transcription termination based on free-energy competition [von Hippel, P. H. & Yager, T. D. (1992) Science 255, 809–812 and von Hippel, P. H. & Yager, T. D. (1991) Proc. Natl. Acad. Sci. USA 88, 2307–2311] requires two or more reaction rates to be delicately balanced over a wide range of physical conditions. A large body of work on glasses and large molecules suggests that this balancing should be impossible in such a large system in the absence of a new organizing principle of matter. We review the experimental literature of termination and find no evidence for such a principle, but do find many troubling inconsistencies, most notably, anomalous memory effects. These effects suggest that termination has a deterministic component and may conceivably not be stochastic at all. We find that a key experiment by Wilson and von Hippel [Wilson, K. S. & von Hippel, P. H. (1994) J. Mol. Biol. 244, 36–51] thought to demonstrate stochastic termination was an incorrectly analyzed regulatory effect of Mg2+ binding.
Resumo:
Specific and processive antitermination by bacteriophage lambda N protein in vivo and in vitro requires the participation of a large number of Escherichia coli proteins (Nus factors), as well as an RNA hairpin (boxB) within the nut site of the nascent transcript. In this study we show that efficient, though nonprocessive, antitermination can be induced by large concentrations of N alone, even in the absence of a nut site. By adding back individual components of the system, we also show that N with nut+ nascent RNA is much more effective in antitermination than is N alone. This effect is abolished if N is competed away from the nut+ RNA by adding, in trans, an excess of boxB RNA. The addition of NusA makes antitermination by the N-nut+ complex yet more effective. This NusA-dependent increase in antitermination is lost when delta nut transcripts are used. These results suggest the formation of a specific boxB RNA-N-NusA complex within the transcription complex. By assuming an equilibrium model, we estimate a binding constant of 5 x 10(6) M-1 for the interaction of N alone with the transcription complex. This value can be used to estimate a characteristic dissociation time of N from the complex that is comparable to the dwell time of the complex at an average template position, thus explaining the nonprocessivity of the antitermination effect induced by N alone. On this basis, the effective dissociation rate of N should be approximately 1000-fold slower from the minimally processive (100-600 bp) N-NusA-nut+ transcription complex and approximately 10(5)-fold slower from the maximally processive (thousands of base pairs) complex containing all of the components of the in vivo N-dependent antitermination system.
Resumo:
Intrinsic termination of transcription in Escherichia coli involves the formation of an RNA hairpin in the nascent RNA. This hairpin plays a central role in the release of the transcript and polymerase at intrinsic termination sites on the DNA template. We have created variants of the lambda tR2 terminator hairpin and examined the relationship between the structure and stability of this hairpin and the template positions and efficiencies of termination. The results were used to test the simple nucleic acid destabilization model of Yager and von Hippel and showed that this model must be modified to provide a distinct role for the rU-rich sequence in the nascent RNA, since a perfect palindromic sequence that is sufficiently long to form an RNA hairpin that could destabilize the entire putative 12-bp RNA-DNA hybrid does not trigger termination at the expected positions. Rather, our results show that both a stable terminator hairpin and the run of 6-8 rU residues that immediately follows are required for effective intrinsic termination and that termination occurs at specific and invariant template positions relative to these two components. Possible structural or kinetic modifications of the simple model are proposed in the light of these findings and of recent results implicating "inchworming" and possible conformational heterogeneity of transcription complexes in intrinsic termination. Thus, these findings argue that the structure and dimensions of the hairpin are important determinants of the termination-elongation decision and suggest that a complete mechanism is likely to involve specific interactions of the polymerase, the RNA terminator hairpin, and, perhaps, the dT-rich template sequence that codes for the run of rU residues at the 3' end of the nascent transcript.
Resumo:
Contributions in German, English, French or Italian.