981 resultados para visuo-spatial memory


Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is little empirical data about the impact of digital inclusion on cognition among older adults. This paper aimed at investigating the effects of a digital inclusion program in the cognitive performance of older individuals who participated in a computer learning workshop named ""Idosos On-Line`` (Elderly Online). Forty-two aged individuals participated in the research study: 22 completed the computer training workshop and 20 constituted the control group. All subjects answered a sociodemographic questionnaire and completed the Addenbrooke`s cognitive examination, revised (ACE-R), which examines five cognitive domains: orientation and attention, memory, verbal fluency, language, and visuo-spatial skills. It was noted that the experimental group`s cognitive performance significantly improved after the program, particularly in the language and memory domains, when compared to the control group. These findings suggest that the acquisition of new knowledge and the use of a new tool, that makes it possible to access the Internet, may bring gains to cognition. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Protein malnutrition induces structural, neurochemical and functional changes in the central nervous system leading to alterations in cognitive and behavioral development of rats. The aim of this work was to investigate the effects of postnatal protein malnutrition on learning and memory tasks. Previously malnourished (6% protein) and well-nourished rats (16% protein) were tested in three experiments: working memory tasks in the Morris water maze (Experiment I), recognition memory of objects (Experiment II), and working memory in the water T-maze (Experiment III). The results showed higher escape latencies in malnourished animals in Experiment I, lower recognition indexes of malnourished animals in Experiment II, and no differences due to diet in Experiment III. It is suggested that protein malnutrition imposed on early life of rats can produce impairments on both working memory in the Morris maze and recognition memory in the open field tests.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Constructing a veridical spatial map by touch poses at least two problems for a perceptual system. First, as the hand is moved through space, the locations of features may be displaced if there is an uncorrected lag between the moment the hand encounters a feature and the time that feature is encoded on a spatial map. Second, due to the sequential nature of the process, some form of memory, which itself may be subject to spatial distortions, is required for integration of spatial samples. We investigated these issues using a task involving active haptic exploration with a stylus swept back and forth in the horizontal plane at the wrist. Remembered locations of tactile targets were shifted towards the medial axis of the forearm, suggesting a central tendency in haptic spatial memory, while evidence for a displacement of perceived locations in the direction of sweep motion was consistent with processing delays.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

RESUMO: Os circuitos fronto-estriatais constituem um sistema em ansa fechada que une diversas regiões do lobo frontal aos gânglios da base, participando, com outras áreas cerebrais, no controlo do movimento, cognição e comportamento. As Distonias Primárias, a Doença de Parkinson e a Hidrocefalia de Pressão Normal, são doenças do movimento caracterizadas por disfunção do circuito fronto-estriatal motor. A conectividade funcional entre as diversas ansas do sistema fronto-estriatal, permite prever que as doenças do movimento possam também acompanhar-se de sintomas da esfera cognitiva e comportamental, cuja avaliação seria importante no manejo diagnóstico e terapêutico dos doentes. Objectivos Os nossos objectivos foram avaliar, por estudos clínicos, a relação entre sintomas motores, cognitivos e comportamentais em três doenças do movimento com fisiopatologias diversas - distonias Primárias, Doença de Parkinson e Hidrocefalia de Pressão Normal - analisando os dados sob a perspectiva teórica fornecida pelo conhecimentos dos vários circuitos frontoestriatais. Os nossos objectivos específicos para cada doença foram: a) Distonias Primárias: avaliação de disfunção executiva em doentes com Distonia Primária e relação com a gravidade dos sintomas motores b) Doença de Parkinson: 1. avaliação breve das funções mentais nas fases iniciais da doença, incluindo análise longitudinal para determinação de factores preditivos para declínio cognitivo; 2. relação entre a função motora e cognitiva e a Perturbação do Comportamento do sono REM, incluindo análise longitudinal; 3.avaliação de sintomas psiquiátricos, de um ponto de vista global e especificamente com incidência sobre as Perturbações do Controlo do Impulso (PCI). c) Hidrocefalia de Pressão Normal: 1. caracterização das alterações da marcha, incluindo comparação com a Doença de Parkinson; 2. caracterização das alterações cognitivas e da relação entre estas e a disfunção da marcha; 3. estudo evolutivo das alterações da marcha e cognitiva em doentes submetido a cirurgia e doentes não submetidos a cirurgia. Métodos: A Distonia Primária, a Doença de Parkinson e a Hidrocefalia de Pressão Normal foram diagnosticadas segundo critérios clínicos validados. Sempre que justificado, foram recrutados grupos de controlo, com indivíduos sem doença, emparelhados para idade, sexo e grau de escolaridade. Os doentes foram avaliados com instrumentos de aplicação clinica directa, incluindo escalas de função motora, testes neuropsicológicos globais e dirigidos às funções executivas e escalas de avaliação psiquiátrica. Testes aplicados nas Distonias Primárias: Unified Dystonia Rating Scale, Wisconsin Card Sorting Test, teste de Stroop, teste de cubos da WAIS, Teste de Retenção Visual de Benton; na Doença de Parkinson: Unified Parkinson's Disease Rating Scale, Frontal Assessment Battery (FAB), Mini-Mental State Examination (MMSE), REM-sleep behaviour disorder Questionnaire; Symptom Chek-list 90-R, Brief Psychiatric Rating Scale, FAS (fluência verbal lexical) Nomeação de Animais (Fluência verbal semântica), prova de repetição de dígitos (WAIS), Rey auditory verbal learning test, teste de Stroop, matrizes progressivas de Raven, Questionnaire for Impulsive-Compulsive Disorders; na HPN: prova cronometrada de marcha,MMSE, prova de memória imediata da WAIS, prova de repetição de dígitos (WAIS), FAB, desenho complexo de Rey, teste de Stroop, cancelamento de letras, teste Grooved Pegboard. Os doentes com HPN foram também submetidos a estudo imagiológico. A avaliação estatística foi adaptada às características de cada um dos estudos.Resultados Distonias Primárias: encontrámos défices de função executiva, envolvendo dificuldade na mudança entre sets cognitivos, bem como correlação significativa entre as pontuações nos testes cronometrados e a gravidade dos sintomas motores. Doença de Parkinson: os doentes com DP obtiveram pontuações significativamente inferiores na FAB e em sub-testes do MMSE (memória e função visuo-espacial). A pontuação no MMSE encontrava-se significativamente correlacionada com itens da função motora não relacionados com o tremor. A disfunção da marcha, a disartria, o fenótipo não tremorígeno, a presença de alucinações e pontuação abaixo do ponto de corte na MMSE, foram factores preditivos de demência na avaliação longitudinal. A rigidez e a disartria foram factores preditivos de declínio nas funções frontais. A disfunção frontal foi factor preditivo de declínio na pontuação do MMSE. Encontrámos uma prevalência elevada de RBD nas fases iniciais da DP, que o estudo longitudinal mostrou ser factor preditivo de declínio motor, nomeadamente por agravamento da bradicinésia. Encontrámos também uma prevalência elevada de sintomas psiquiátricos, nomeadamente psicose, depressão, ansiedade, somatização e sintomas obsessivo-compulsivos. As PCI não se encontravam relacionadas com o fenótipo motor, com as complicações motoras do tratamento dopaminérgico ou com a disfunção cognitiva. HPN: os doentes com HPN e os DP apresentaram um padrão disfunção da marcha semelhante, caraterizado por passos curtos, lentidão e dificuldades de equilíbrio, sendo os sintomas mais graves na HPN. Os doentes de Parkinson com maior duração de doença, maior dose de dopaminérgicos e fenótipo motor acinético-rígido apresentaram um padrão de disfunção da marcha de gravidade semelhante ao encontrado na HPN. As alterações vasculares da substância branca, em particular as encontradas na região frontal, encontravam-se negativamente correlacionadas com a melhoria da marcha após PL. O estudo das funções cognitivas mostrou um padrão de atingimento global, com valores mais baixos na cópia do desenho complexo de Rey. Os resultados nas provas de função cognitiva não se encontravam significativamente correlacionados com os resultados na prova da marcha. A progressão na disfunção da marcha encontrava-se relacionada com o tratamento não cirúrgico, idade superior na primeira avaliação, presença de lesões da substância branca, e presença de factores de risco vascular, ao passo que não foram encontrados factores que predissessem de modo significativo o agravamento da função cognitiva. Conclusões: Os resultados dos diversos estudos, evidenciam a presença de alterações cognitivas e comportamentais nas três doenças de movimento. O padrão destas alterações e o modo como estas se relacionaram com os sintomas motores variou de doença para doença. Nas Distonias primárias, a perseveração cognitiva poderá ser o sintoma correspondente à perseveração motora própria da doença, sugerindo disfunção no circuito dorso-lateral frontoestriatal. A correlação entre a gravidade motora da doença e o resultado nos testes cognitivos cronometrados, poderá ser o efeito da relação entre bradicinésia e bradifrenia. Na Doença de Parkinson, o espectro de alterações é mais acentuado, espelhando a disseminação do processo degenerativo no SNC. Para além dos sintomas de disfunção executiva, sugerindo disfunção das tês ansas não motoras, existem sinais de disfunção cognitiva global, estas com uma influência mais significativa no desenvolvimento da demência. A relação entre os diferentes sintomas motores e cognitivos é também complexa, embora se evidencie uma dissociação significativa entre o tremor, sem relação com os sintomas não motores, e os sintomas motores não tremorígenos, relacionados com o declínio cognitivo. Enquanto que a presença de RBD parece ser um factor preditivo de agravamento motor, os sintomas psiquiátricos, também muito frequentes, apresentam uma relação menos clara com a função motora. Destes, os sintomas obsessivo-compulsivos são aqueles que com mais frequência se atribuem a disfunção do sistema fronto-estriatal, nomeadamente da ansa orbito-frontal. As PCI também não mostraram ter relação com os sintomas motores ou cognitivos. Na HPN, é patente o carácter fronto-estriatal das alterações da marcha, demonstrado tanto na sua caracterização quanto no efeito deletério das lesões vasculares da substância branca do lobo frontal na recuperação da marcha após PL. As alterações cognitivas parecem ter um padrão mais difuso, o que talvez explique a falta de correlação com os sintomas motores - esta dissociação pode ser causada quer por diferença nos mecanismos fisiopatológicos quer por presença de comorbilidades cognitivas. --------- ABSTRACT: Fronto-striatal circuits constitute a closed loop system which connects different parts of the frontal lobes to the basal ganglia. They are engaged in motor, cognitive and behavioural control. Primary Dystonia, Parkinson's Disease and Normal-Pressure Hydrocephalus are movement disorders caused by disturbance of the motor fronto-striatal circuit. The existence of cognitive and behavioural dysfunction in these movement disorders is predictable, given the functional connectivity between the several distinct loops of the circuit. Evaluation of cognitive and behavioural dysfunction in these three disorders is thus both of clinical and theoretical relevance. Objectives Our objectives were to evaluate, by clinical means, the relation between motor, cognitive and behavioural symptoms in three movement disorders with different pathophysiological backgrounds - Primary Dystonia, Parkinson's Disease and Normal-Pressure Hydrocephalus - and to analyse the study results under the theoretical framework formed by present knowledge of the fronto-estriatal system. Specific objectives: a) Primary Dystonia: executive dysfunction assessment and correlation analysis with motor dysfunction severity; b) Parkinson's Disease: 1. brief cognitive assessment in the early stages of disease, including a longitudinal analysis for determination of predictive factors for cognitive decline; 2. to investigate the relation between RBD and cognitive and motor dysfunction, including a longitudinal analysis; 3. psychiatric symptom assessment, with particular incidence on Impulse Control Disorders; c) Normal-Pressure Hydrocephalus: 1. gait dysfunction characterization and comparison with Parkinson's Disease patients; 2. determination of cognitive dysfunction profile and its relation with gait dysfunction; 3. follow-up study of cognitive and motor outcome in patients submitted and not submitted to shunt surgery. Methods: Primary Dystonia, Parkinson's Disease and Normal Pressure Hydrocephalus were diagnosed according to clinically validate criteria. Where warranted, we recruited control groups formed by healthy individuals, matched for age, sex and educational level. Patients were evaluated with instruments of direct clinical application, including motor function scales, neuropsychological tests aimed at global and executive functions and psychiatric rating scales. Tests used in Primary Dystonia: Unified Dystonia Rating Scale, Wisconsin Card Sorting Test, Stroop Test, Cube Assembly test (WAIS), Benton’s Visual Retention Test; in Parkinson's Disease: Unified Parkinson's Disease Rating Scale, Frontal Assessment Battery (FAB) , Mini-mental State Examination (MMSE), REM-sleep behavior disorder Questionnaire, Symptom Check-list 90- R, Brief Psychiatric Rating Scale, FAS (phonetic verbal fluency), semantic verbal fluency test, digit span test (WAIS), auditory verbal learning test,Stroop test, Raven's progressive Matrices, Questionnaire for Impulsive-Compulsive Disorders; in NPH: timed walking test, MMSE, immediate memory task (WAIS), digit span test (WAIS), FAB, Rey’s Complex Figure test, Stroop test, letter cancellation test, Perdue Pegboard test. NPH patients were also subjected to an imaging study. Statistics were adapted to the characteristics of each study.Results: Primary Dystonia: we found set-shifting deficits as well as significant correlation between timed neuropsychological tests and dystonia severity. Parkinson's Disease: PD patients had significantly lower scores on the FAB and on the memory and visuo-spatial tests of the MMSE; MMSE scores were significantly correlated to non-tremor motor scores; gait dysfunction and speech scores, non-tremor motor phenotype, hallucinations and scores bellow cut-off on the MMSE were predictive of dementia at follow-up; speech and rigidity scores were predictive of frontal type decline; frontal dysfunction was predictivy of decline in MMSE scores; RBD bradykinesia worsening; psychiatric symptoms were prevalent, particularly Psychosis, Depression, Anxiety, Somatisation and Obsessive-Compulsive Symptoms; Impulse Control Disorders were unrelated to motor phenotype,motor side effects of dopamine treatment and executive function; NPH: gait dysfunction was worse in NPH when compared to PD patients, although the pattern was similarly characterized by slowness, short steps and disequilibrium; PD patients whose gait disturbance was as severe as that of NPH patients were characterized by longer disease duration, predominance of non-tremor motor scores, more advanced disease stage and higher dopamine dose; frontal white matter lesions correlated negatively with improvement after LP; cognitive function assessment revealed wide spread deficits, with lower results on the drawing of the complex figure of Rey, which were not significantly correlated to gait dysfunction; older age, white matter lesions and the presence of vascular risk factors were predictive factors for motor but not cognitive function worsening. Conclusion: Results from our studies highlight the presence of cognitive and behavioural dysfunction in all three movement disorders. Symptom pattern and the relation with ovement derangement varied according to the disease. In Primary Dystonia, set-shifting difficulties could be the cognitive counterpart of motor perseveration characteristic of this disorder, suggesting dysfunction of the dorso-lateral circuit. The relation between timed tests and dystonia severity could suggest a relation between bradyphrenia and bradykinesia in Primary Dystonia. In Parkinson's Disease patients, the spectrum of non-motor symptoms is wider, probably reflecting the spread of neurodegeneration beyond the fronto-striatal circuits. While frontal type deficits predominate, suggestive of dorso-lateral and orbito-frontal dysfunction, non-frontal deficits were also apparent in the initial stages of disease, and were predictive of dementia at follow-up. The relationship between cognitive and motor symptoms is complex, although the results strongly suggest a dissociation between tremor symptoms, which bore no relation with non-motor symptoms, and non-tremor symptoms,whichwas frequent, and a predictive factor for which were related with cognitive decline. While RBD was found to be a predictive factor for bradykinesia worsening, psychiatric symptoms, which were also frequent, showed no apparent relation with motor dysfunction. Relevant to our theoretical consideration was the high prevalence of OCS, which have been attributed to orbito-frontal dysfunction. As to the particular case of ICD, we found no relation either with motor or cognitive dysfunction. The fronto-striatal nature of gait dysfunction in NPH is suggest by the clinical characterization study and by the effects of frontal white matter lesions on gait recovery after LP, whereas cognitive dysfunction presented a more diffuse pattern, which could explain the lack or relation with gait assessment results and also the different outcome on the longitudinal study - this dissociation could be caused by a real difference in pathophysiological mechanisms or, in alternative, be due to the existence of cognitive comorbidities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Choline supplementation improving memory functions in rodents is assumed to increase the synthesis and release of acetylcholine in the brain. We have found that a combined pre- and postnatal supplementation results in long-lasting facilitation of spatial memory in juvenile rats when training was conducted in presence of a local salient cue. The present work was aimed at analysing the effects of peri- and postnatal choline supplementation on spatial abilities of naive adult rats. Rats given a perinatal choline supplementation were trained in various cued procedures of the Morris navigation task when aged 5 months. The treatment had a specific effect of reducing the escape latency of the rats when the platform was at a fixed position in space and surrounded by a suspended cue. This effect was associated with an increased spatial bias when the cue and platform were removed. In this condition, the control rats showed impaired spatial discrimination following the removal of the target cue, most likely due to an overshadowing of the distant environmental cues. This impairment was not observed in the treated rats. Further training with the suspended cue at unpredictable places in the pool revealed longer escape latencies in the control than in the treated rats suggesting that this procedure induced a selective perturbation of the normal but not of the treated rats. A special probe trial with the cue at an irrelevant position and no escape platform revealed a significant bias of the control rats toward the cue and of the treated rats toward the uncued spatial escape position. This behavioural dissociation suggests that a salient cue associated with the target induces an alternative "non spatial" guidance strategy in normal rats, with the risk of overshadowing of the more distant spatial cues. In this condition, the choline supplementation facilities a spatial reliance on the cue, that is an overall facilitation of learning a set of spatial relations between several visual cues. As a consequence, the improved escape in presence of the cue is associated with a stronger memory of the spatial position following disappearance of the cue. This and previous observations suggest that a specific spatial attention process relies on the buffering of highly salient visual cues.to facilitate integration of their relative position in the environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the context of an autologous cell transplantation study, a unilateral biopsy of cortical tissue was surgically performed from the right dorsolateral prefrontal cortex (dlPFC) in two intact adult macaque monkeys (dlPFC lesioned group), together with the implantation of a chronic chamber providing access to the left motor cortex. Three other monkeys were subjected to the same chronic chamber implantation, but without dlPFC biopsy (control group). All monkeys were initially trained to perform sequential manual dexterity tasks, requiring precision grip. The motor performance and the prehension's sequence (temporal order to grasp pellets from different spatial locations) were analysed for each hand. Following the surgery, transient and moderate deficits of manual dexterity per se occurred in both groups, indicating that they were not due to the dlPFC lesion (most likely related to the recording chamber implantation and/or general anaesthesia/medication). In contrast, changes of motor habit were observed for the sequential order of grasping in the two monkeys with dlPFC lesion only. The changes were more prominent in the monkey subjected to the largest lesion, supporting the notion of a specific effect of the dlPFC lesion on the motor habit of the monkeys. These observations are reminiscent of previous studies using conditional tasks with delay that have proposed a specialization of the dlPFC for visuo-spatial working memory, except that this is in a different context of "free-will", non-conditional manual dexterity task, without a component of working memory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study analyzed the spatial memory capacities of rats in darkness with visual and/or olfactory cues through ontogeny. Tests were conducted with the homing board, where rats had to find the correct escape hole. Four age groups (24 days, 48 days, 3-6 months, and 12 months) were trained in 3 conditions: (a) 3 identical light cues; (b) 5 different olfactory cues; and (c) both types of cues, followed by removal of the olfactory cues. Results indicate that immature rats first take into account olfactory information but are unable to orient with only the help of discrete visual cues. Olfaction enables the use of visual information by 48-day-old rats. Visual information predominantly supports spatial cognition in adult and 12-month-old rats. Results point out cooperation between vision and olfaction for place navigation during ontogeny in rats.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: Cognitive impairment affects 40-65% of multiple sclerosis (MS) patients, often since early stages of the disease (relapsing remitting MS, RRMS). Frequently affected functions are memory, attention or executive abilities but the most sensitive measure of cognitive deficits in early MS is the information processing speed (Amato, 2008). MRI has been extensively exploited to investigate the substrate of cognitive dysfunction in MS but the underlying physiopathological mechanisms remain unclear. White matter lesion load, whole-brain atrophy and cortical lesions' number play a role but correlations are in some cases modest (Rovaris, 2006; Calabrese, 2009). In this study, we aimed at characterizing and correlating the T1 relaxation times of cortical and sub-cortical lesions with cognitive deficits detected by neuropsychological tests in a group of very early RR MS patients. Methods: Ten female patients with very early RRMS (age: 31.6 ±4.7y; disease duration: 3.8 ±1.9y; EDSS disability score: 1.8 ±0.4) and 10 age- and gender-matched healthy volunteers (mean age: 31.2 ±5.8y) were included in the study. All participants underwent the following neuropsychological tests: Rao's Brief Repeatable Battery of Neuropsychological tests (BRB-N), Stockings of Cambridge, Trail Making Test (TMT, part A and B), Boston Naming Test, Hooper Visual Organization Test and copy of the Rey-Osterrieth Complex Figure. Within 2 weeks from neuropsychological assessment, participants underwent brain MRI at 3T (Magnetom Trio a Tim System, Siemens, Germany) using a 32-channel head coil. The imaging protocol included 3D sequences with 1x1x1.2 mm3 resolution and 256x256x160 matrix, except for axial 2D-FLAIR: -DIR (T2-weighted, suppressing both WM and CSF; Pouwels, 2006) -MPRAGE (T1-weighted; Mugler, 1991) -MP2RAGE (T1-weighted with T1 maps; Marques, 2010) -FLAIR SPACE (only for patient 4-10, T2-weighted; Mugler, 2001) -2D Axial FLAIR (0.9x0.9x2.5 mm3, 256x256x44 matrix). Lesions were identified by one experienced neurologist and radiologist using all contrasts, manually contoured and assigned to regional locations (cortical or sub-cortical). Lesion number, volume and T1 relaxation time were calculated for lesions in each contrast and in a merged mask representing the union of the lesions from all contrasts. T1 relaxation times of lesions were normalized with the mean T1 value in corresponding control regions of the healthy subjects. Statistical analysis was performed using GraphPad InStat software. Cognitive scores were compared between patients and controls with paired t-tests; p values ≤ 0.05 were considered significant. Spearmann correlation tests were performed between the cognitive tests, which differed significantly between patients and controls, and lesions' i) number ii) volume iii) T1 relaxation time iv) disease duration and v) years of study. Results: Cortical and sub-cortical lesions count, T1 values and volume are reported in Table 1 (A and B). All early RRMS patients showed cortical lesions (CLs) and the majority consisted of CLs type I (lesions with a cortical component extending to the sub-cortical tissue). The rest of cortical lesions were characterized as type II (intra-cortical lesions). No type III/IV lesions (large sub-pial lesions) were detected. RRMS patients were slightly less educated (13.5±2.5y vs. 16.3±1.8y of study, p=0.02) than the controls. Signs of cortical dysfunction (i.e. impaired learning, language, visuo-spatial skills or gnosis) were rare in all patients. However, patients showed on average lower scores on measures of visual attention and information processing speed (TMT-part A: p=0.01; TMT-part B: p=0.006; PASAT-included in the BRB-N: p=0.04). The T1 relaxation values of CLs type I negatively correlated with the TMT-part A score (r=0.78, p<0.01). The correlations of TMT-part B score and PASAT score with T1 relaxation time of lesions as well and the correlation between TMT-part A, TMT-part B and PASAT score with lesions' i) number ii) volume iii) disease duration and iv) years of study did not reach significance. In order to preclude possible influences from partial volume effects on the T1 values, the correlation between lesion volume and T1 value of CLs type I was calculated; no correlation was found, suggesting that partial volume effects did not affect the statistics. Conclusions: The present pilot study reports for the first time the presence and the T1 characteristics at 3 T of cortical lesions in very early RRMS (< 6 y disease duration). It also shows that CLS type I represents the most frequent cortical lesion type in this cohort of RRMS patients. In addition, it reveals a negative correlation between the attentional test TMT-part A and the T1 properties of cortical lesions type I. In other words, lower attention deficits are concomitant with longer T1-relaxation time in cortical lesions. In respect to this last finding, it could be speculated that long relaxation time correspond to a certain degree of tissue loss that is enough to stimulate compensatory mechanisms. This hypothesis is in line with previous fMRI studies showing functional compensatory mechanisms to help maintaining normal or sub-normal attention performances in RR MS patients (Penner, 2003).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Experiments were designed to examine some properties of spatial representations in rats. Adult subjects were trained to escape through a hole at a fixed position in a large circular arena (see Schenk 1989). The experiments were conducted in the dark, with a limited number of controlled visual light cues in order to assess the minimal cue requirement for place learning. Three identical light cues (shape, height and distance from the table) were used. Depending on the condition, they were either permanently on, or alternatively on or off, depending on the position of the rat in the field. Two questions were asked: a) how many identical visual cues were necessary for spatial discrimination in the dark, and b) could rats integrate the relative positions of separate cues, under conditions in which the rat was never allowed to perceive all three cues simultaneously. The results suggest that rats are able to achieve a place discrimination task even if the three cues necessary for efficient orientation can never be seen simultaneously. A dissociation between the discrimination of the spatial position of the goal and the capacity to reach it by a direct path suggests that a reduced number of cues might require prolonged locomotion to allow an accurate orientation in the environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Time is embedded in any sensory experience: the movements of a dance, the rhythm of a piece of music, the words of a speaker are all examples of temporally structured sensory events. In humans, if and how visual cortices perform temporal processing remains unclear. Here we show that both primary visual cortex (V1) and extrastriate area V5/MT are causally involved in encoding and keeping time in memory and that this involvement is independent from low-level visual processing. Most importantly we demonstrate that V1 and V5/MT are functionally linked and temporally synchronized during time encoding whereas they are functionally independent and operate serially (V1 followed by V5/MT) while maintaining temporal information in working memory. These data challenge the traditional view of V1 and V5/MT as visuo-spatial features detectors and highlight the functional contribution and the temporal dynamics of these brain regions in the processing of time in millisecond range. The present project resulted in the paper entitled: 'How the visual brain encodes and keeps track of time' by Paolo Salvioni, Lysiann Kalmbach, Micah Murray and Domenica Bueti that is now submitted for publication to the Journal of Neuroscience.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction : Driving is a complex everyday task requiring mechanisms of perception, attention, learning, memory, decision making and action control, thus indicating that involves numerous and varied brain networks. If many data have been accumulated over time about the effects of alcohol consumption on driving capability, much less is known about the role of other psychoactive substances, such as cannabis (Chang et al.2007, Ramaekers et al, 2006). Indeed, the solicited brain areas during safe driving which could be affected by cannabis exposure have not yet been clearly identified. Our aim is to study these brain regions during a tracking task related to driving skills and to evaluate the modulation due to the tolerance of cannabis effects. Methods : Eight non-smoker control subjects participated to an fMRI experiment based on a visuo-motor tracking task, alternating active tracking blocks with passive tracking viewing and rest condition. Half of the active tracking conditions included randomly presented traffic lights as distractors. Subjects were asked to track with a joystick with their right hand and to press a button with their left index at each appearance of a distractor. Four smoking subjects participated to the same fMRI sessions once before and once after smoking cannabis and a placebo in two independent cross-over experiments. We quantified the performance of the subjects by measuring the precision of the behavioural responses (i.e. percentage of time of correct tracking and reaction times to distractors). Functional MRI data were acquired using on a 3.0T Siemens Trio system equipped with a 32-channel head coil. BOLD signals will be obtained with a gradient-echo EPI sequence (TR=2s, TE=30ms, FoV=216mm, FA=90°, matrix size 72×72, 32 slices, thickness 3mm). Preprocessing, single subject analysis and group statistics were conducted on SPM8b. Results were thresholded at p<0.05 (FWE corrected) and at k>30 for spatial extent. Results : Behavioural results showed a significant impairment in task and cognitive test performance of the subjects after cannabis inhalation when comparing their tracking accuracy either to the controls subjects or to their performances before the inhalation or after the placebo inhalation (p<0.001 corrected). In controls, fMRI BOLD analysis of the active tracking condition compared to the passive one revealed networks of polymodal areas in superior frontal and parietal cortex dealing with attention and visuo-spatial coordination. In accordance to what is known of the visual and sensory motor networks we found activations in V4, frontal eye-field, right middle frontal gyrus, intra-parietal sulcus, temporo-parietal junction, premotor and sensory-motor cortex. The presence of distractors added a significant activation in the precuneus. Preliminary results on cannabis smokers in the acute phase, compared either to themselves before the cannabis inhalation or to control subjects, showed a decreased activation in large portions of the frontal and parietal attention network during the simple tracking task, but greater involvement of precuneus, of the superior part of intraparietal sulcus and middle frontal gyrus bilaterally when distractors were present in the task. Conclusions : Our preliminary results suggest that acute cannabis smoking alters performances and brain activity during active tracking tasks, partly reorganizing the recruitment of brain areas of the attention network.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present work assessed the effects of intracerebroventricular injections of rh recombined human nerve growth factor (rh NGF) (5 micrograms/2.5 microl) at postnatal days 12 and 13 upon the development of spatial learning capacities. The treated rats were trained at the age of 22 days to escape onto an invisible platform at a fixed position in space in a Morris navigation task. For half of the subjects, the training position was also cued, a procedure aimed at facilitating escape and at reducing attention to the distant spatial cues. Later, at the age of 6 months, all the rats were trained in a radial-arm maze task. Treatment effects were found in both immature and adult rats. The injection of NGF improved the performance in the Morris navigation task in both training conditions. There was a significant reduction in the escape latency and an increased bias toward the training platform quadrant during probe trials. The most consistent effect was the precocious development of an adult-like spatial memory. In the radial-arm maze, the NGF-treated rats made significantly fewer reentries than vehicle rats and this effect was particularly marked in the treated female rats. Taken together, these experiments reveal that the development and the maintenance of an accurate spatial representation are tightly related to the development of brain structures facilitated by the action of NGF. Moreover, these experiments demonstrate that an acute pharmacological treatment that leads to a transient modification in the choline acetyltransferase activity can induce a behavioral change long after the treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In adult mammals, neural progenitors located in the dentate gyrus retain their ability to generate neurons and glia throughout lifetime. In rodents, increased production of new granule neurons is associated with improved memory capacities, while decreased hippocampal neurogenesis results in impaired memory performance in several memory tasks. In mouse models of Alzheimer's disease, neurogenesis is impaired and the granule neurons that are generated fail to integrate existing networks. Thus, enhancing neurogenesis should improve functional plasticity in the hippocampus and restore cognitive deficits in these mice. Here, we performed a screen of transcription factors that could potentially enhance adult hippocampal neurogenesis. We identified Neurod1 as a robust neuronal determinant with the capability to direct hippocampal progenitors towards an exclusive granule neuron fate. Importantly, Neurod1 also accelerated neuronal maturation and functional integration of new neurons during the period of their maturation when they contribute to memory processes. When tested in an APPxPS1 mouse model of Alzheimer's disease, directed expression of Neurod1 in cycling hippocampal progenitors conspicuously reduced dendritic spine density deficits on new hippocampal neurons, to the same level as that observed in healthy age-matched control animals. Remarkably, this population of highly connected new neurons was sufficient to restore spatial memory in these diseased mice. Collectively our findings demonstrate that endogenous neural stem cells of the diseased brain can be manipulated to become new neurons that could allow cognitive improvement.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The hippocampal formation is essential for the processing of episodic memories for autobiographical events that happen in unique spatiotemporal contexts. Interestingly, before 2 years of age, children are unable to form or store episodic memories for recall later in life, a phenomenon known as infantile amnesia. From 2 to 7 years of age, there are fewer memories than predicted based on a forgetting function alone, a phenomenon known as childhood amnesia. Here, we discuss the postnatal maturation of the primate hippocampal formation with the goal of characterizing the development of the neurobiological substrates thought to subserve the emergence of episodic memory. Distinct regions, layers and cells of the hippocampal formation exhibit different profiles of structural and molecular development during early postnatal life. The protracted period of neuronal addition and maturation in the dentate gyrus is accompanied by the late maturation of specific layers in different hippocampal regions that are located downstream from the dentate gyrus, particularly CA3. In contrast, distinct layers in several hippocampal regions, particularly CA1, which receive direct projections from the entorhinal cortex, exhibit an early maturation. In addition, hippocampal regions that are more highly interconnected with subcortical structures, including the subiculum, presubiculum, parasubiculum and CA2, mature even earlier. These findings, together with our studies of the development of human spatial memory, support the hypothesis that the differential maturation of distinct hippocampal circuits might underlie the differential emergence of specific "hippocampus-dependent" memory processes, culminating in the emergence of episodic memory concomitant with the maturation of all hippocampal circuits.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

These experiments were designed to analyze how medial septal lesions reducing the cholinergic innervation in the hippocampus might affect place learning. Rats with quisqualic lesions of the medial septal area (MS) were trained in a water maze and on a homing table where the escape position was located at a spatially fixed position and further indicated by a salient cue suspended above it. The lesioned rats were significantly impaired in reaching the cued escape platform during training. In addition rats, did not show any discrimination of the training sector during a probe trial in which no platform or cue was present. This impairment remained significant during further training in the absence of the cue. When the cued escape platform was located at an unpredictable spatial location, the MS-lesioned rats showed no deficit and spent more time under the cue than control rats during the probe trial. On the homing board, with a salient object in close proximity to the escape hole, the MS rats showed no deficit in escape latencies, although a significant reduction in spatial memory was observed. However, this was overcome by additional training in the absence of the cue. Under these conditions, rats with septal lesions were prone to develop a pure guidance strategy, whereas normal rats combined a guidance strategy with a memory of the escape position relative to more distant landmarks. The presence of a salient cue appeared to decrease attention to environmental landmarks, thus reducing spatial memory. These data confirm the general hypothesis that MS lesions reduce the capacity to rely on a representation of the relation between several landmarks with different salience.