931 resultados para visualisation of acoustic data
Resumo:
A great number of low-temperature geothermal fields occur in Northern-Portugal related to fractured rocks. The most important superficial manifestations of these hydrothermal systems appear in pull-apart tectonic basins and are strongly conditioned by the orientation of the main fault systems in the region. This work presents the interpretation of gravity gradient maps and 3D inversion model produced from a regional gravity survey. The horizontal gradients reveal a complex fault system. The obtained 3D model of density contrast puts into evidence the main fault zone in the region and the depth distribution of the granitic bodies. Their relationship with the hydrothermal systems supports the conceptual models elaborated from hydrochemical and isotopic water analyses. This work emphasizes the importance of the role of the gravity method and analysis to better understand the connection between hydrothermal systems and the fractured rock pattern and surrounding geology. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
Seismic data is difficult to analyze and classical mathematical tools reveal strong limitations in exposing hidden relationships between earthquakes. In this paper, we study earthquake phenomena in the perspective of complex systems. Global seismic data, covering the period from 1962 up to 2011 is analyzed. The events, characterized by their magnitude, geographic location and time of occurrence, are divided into groups, either according to the Flinn-Engdahl (F-E) seismic regions of Earth or using a rectangular grid based in latitude and longitude coordinates. Two methods of analysis are considered and compared in this study. In a first method, the distributions of magnitudes are approximated by Gutenberg-Richter (G-R) distributions and the parameters used to reveal the relationships among regions. In the second method, the mutual information is calculated and adopted as a measure of similarity between regions. In both cases, using clustering analysis, visualization maps are generated, providing an intuitive and useful representation of the complex relationships that are present among seismic data. Such relationships might not be perceived on classical geographic maps. Therefore, the generated charts are a valid alternative to other visualization tools, for understanding the global behavior of earthquakes.
Resumo:
Cooperating objects (COs) is a recently coined term used to signify the convergence of classical embedded computer systems, wireless sensor networks and robotics and control. We present essential elements of a reference architecture for scalable data processing for the CO paradigm.
Resumo:
The goal of this study is the analysis of the dynamical properties of financial data series from worldwide stock market indexes during the period 2000–2009. We analyze, under a regional criterium, ten main indexes at a daily time horizon. The methods and algorithms that have been explored for the description of dynamical phenomena become an effective background in the analysis of economical data. We start by applying the classical concepts of signal analysis, fractional Fourier transform, and methods of fractional calculus. In a second phase we adopt the multidimensional scaling approach. Stock market indexes are examples of complex interacting systems for which a huge amount of data exists. Therefore, these indexes, viewed from a different perspectives, lead to new classification patterns.
Resumo:
This paper addresses the calculation of derivatives of fractional order for non-smooth data. The noise is avoided by adopting an optimization formulation using genetic algorithms (GA). Given the flexibility of the evolutionary schemes, a hierarchical GA composed by a series of two GAs, each one with a distinct fitness function, is established.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Beyond the classical statistical approaches (determination of basic statistics, regression analysis, ANOVA, etc.) a new set of applications of different statistical techniques has increasingly gained relevance in the analysis, processing and interpretation of data concerning the characteristics of forest soils. This is possible to be seen in some of the recent publications in the context of Multivariate Statistics. These new methods require additional care that is not always included or refered in some approaches. In the particular case of geostatistical data applications it is necessary, besides to geo-reference all the data acquisition, to collect the samples in regular grids and in sufficient quantity so that the variograms can reflect the spatial distribution of soil properties in a representative manner. In the case of the great majority of Multivariate Statistics techniques (Principal Component Analysis, Correspondence Analysis, Cluster Analysis, etc.) despite the fact they do not require in most cases the assumption of normal distribution, they however need a proper and rigorous strategy for its utilization. In this work, some reflections about these methodologies and, in particular, about the main constraints that often occur during the information collecting process and about the various linking possibilities of these different techniques will be presented. At the end, illustrations of some particular cases of the applications of these statistical methods will also be presented.
Resumo:
In this paper we describe a low cost distributed system intended to increase the positioning accuracy of outdoor navigation systems based on the Global Positioning System (GPS). Since the accuracy of absolute GPS positioning is insufficient for many outdoor navigation tasks, another GPS based methodology – the Differential GPS (DGPS) – was developed in the nineties. The differential or relative positioning approach is based on the calculation and dissemination of the range errors of the received GPS satellites. GPS/DGPS receivers correlate the broadcasted GPS data with the DGPS corrections, granting users increased accuracy. DGPS data can be disseminated using terrestrial radio beacons, satellites and, more recently, the Internet. Our goal is to provide mobile platforms within our campus with DGPS data for precise outdoor navigation. To achieve this objective, we designed and implemented a three-tier client/server distributed system that, first, establishes Internet links with remote DGPS sources and, then, performs campus-wide dissemination of the obtained data. The Internet links are established between data servers connected to remote DGPS sources and the client, which is the data input module of the campus-wide DGPS data provider. The campus DGPS data provider allows the establishment of both Intranet and wireless links within the campus. This distributed system is expected to provide adequate support for accurate outdoor navigation tasks.
Resumo:
In this paper, a new parallel method for sparse spectral unmixing of remotely sensed hyperspectral data on commodity graphics processing units (GPUs) is presented. A semi-supervised approach is adopted, which relies on the increasing availability of spectral libraries of materials measured on the ground instead of resorting to endmember extraction methods. This method is based on the spectral unmixing by splitting and augmented Lagrangian (SUNSAL) that estimates the material's abundance fractions. The parallel method is performed in a pixel-by-pixel fashion and its implementation properly exploits the GPU architecture at low level, thus taking full advantage of the computational power of GPUs. Experimental results obtained for simulated and real hyperspectral datasets reveal significant speedup factors, up to 1 64 times, with regards to optimized serial implementation.
Resumo:
Electric power networks, namely distribution networks, have been suffering several changes during the last years due to changes in the power systems operation, towards the implementation of smart grids. Several approaches to the operation of the resources have been introduced, as the case of demand response, making use of the new capabilities of the smart grids. In the initial levels of the smart grids implementation reduced amounts of data are generated, namely consumption data. The methodology proposed in the present paper makes use of demand response consumers’ performance evaluation methods to determine the expected consumption for a given consumer. Then, potential commercial losses are identified using monthly historic consumption data. Real consumption data is used in the case study to demonstrate the application of the proposed method.
Resumo:
This paper studies the statistical distributions of worldwide earthquakes from year 1963 up to year 2012. A Cartesian grid, dividing Earth into geographic regions, is considered. Entropy and the Jensen–Shannon divergence are used to analyze and compare real-world data. Hierarchical clustering and multi-dimensional scaling techniques are adopted for data visualization. Entropy-based indices have the advantage of leading to a single parameter expressing the relationships between the seismic data. Classical and generalized (fractional) entropy and Jensen–Shannon divergence are tested. The generalized measures lead to a clear identification of patterns embedded in the data and contribute to better understand earthquake distributions.
Resumo:
Retail services are a main contributor to municipal budget and are an activity that affects perceived quality-of-life, especially for those with mobility difficulties (e.g. the elderly, low income citizens). However, there is evidence of a decline in some of the services market towns provide to their citizens. In market towns, this decline has been reported all over the western world, from North America to Australia. The aim of this research was to understand retail decline and enlighten on some ways of addressing this decline, using a case study, Thornbury, a small town in the Southwest of England. Data collected came from two participatory approaches: photo-surveys and multicriteria mapping. The interpretation of data came from using participants as analysts, but also, using systems thinking (systems diagramming and social trap theory) for theory building. This research moves away from mainstream economic and town planning perspectives by making use of different methods and concepts used in anthropology and visual sociology (photo-surveys), decision-making and ecological economics (multicriteria mapping and social trap theory). In sum, this research has experimented with different methods, out of their context, to analyse retail decline in a small town. This research developed a conceptual model for retail decline and identified the existence of conflicting goals and interests and their implications for retail decline, as well as causes for these. Most of the potential causes have had little attention in the literature. This research also identified that some of the measures commonly used for dealing with retail decline may be contributing to the causes of retail decline itself. Additionally, this research reviewed some of the measures that can be used to deal with retail decline, implications for policy-making and reflected on the use of the data collection and analysis methods in the context of small to medium towns.
Resumo:
AbstractINTRODUCTION:We present a review of injuries in humans caused by aquatic animals in Brazil using the Information System for Notifiable Diseases [ Sistema de Informação de Agravos de Notificação (SINAN)] database.METHODS:A descriptive and retrospective epidemiological study was conducted from 2007 to 2013.RESULTS:A total of 4,118 accidents were recorded. Of these accidents, 88.7% (3,651) were caused by venomous species, and 11.3% (467) were caused by poisonous, traumatic or unidentified aquatic animals. Most of the events were injuries by stingrays (69%) and jellyfish (13.1%). The North region was responsible for the majority of reports (66.2%), with a significant emphasis on accidents caused by freshwater stingrays (92.2% or 2,317 cases). In the South region, the region with the second highest number of records (15.7%), jellyfish caused the majority of accidents (83.7% or 452 cases). The Northeastern region, with 12.5% of the records, was notable because almost all accidents were caused by toadfish (95.6% or 174 cases).CONCLUSIONS:Although a comparison of different databases has not been performed, the data presented in this study, compared to local and regional surveys, raises the hypothesis of underreporting of accidents. As the SINAN is the official system for the notification of accidents by venomous animals in Brazil, it is imperative that its operation be reviewed and improved, given that effective measures to prevent accidents by venomous animals depend on a reliable database and the ability to accurately report the true conditions.
Resumo:
INTRODUCTION:With the ease provided by current computational programs, medical and scientific journals use bar graphs to describe continuous data.METHODS:This manuscript discusses the inadequacy of bars graphs to present continuous data.RESULTS:Simulated data show that box plots and dot plots are more-feasible tools to describe continuous data.CONCLUSIONS:These plots are preferred to represent continuous variables since they effectively describe the range, shape, and variability of observations and clearly identify outliers. By contrast, bar graphs address only measures of central tendency. Bar graphs should be used only to describe qualitative data.
Resumo:
Programa Doutoral em Matemática e Aplicações.