936 resultados para visual surveillance system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we present the development of a visual evaluation system for routine assessment of in vitro-engineered cartilaginous tissue. Neocartilage was produced by culturing human articular chondrocytes in pellet culture systems or in a scaffold-free bioreactor system. All engineered tissues were embedded in paraffin and were sectioned and stained with Safranin O-fast green. The evaluation of each sample was broken into 3 categories (uniformity and intensity of Safranin O stain, distance between cells/amount of matrix produced, and cell morphology), and each category had 4 components with a score ranging from 0 to 3. Three observers evaluated each sample, and the new system was independently tested against an objective computer-based histomorphometry system. Pellets were also assessed biochemically for glycosaminoglycan (GAG) content. Pellet histology scores correlated significantly with GAG contents and were in agreement with the computer-based histomorphometry system. This system allows a valid and rapid assessment of in vitro-generated cartilaginous tissue that has a relevant association with objective parameters indicative of cartilage quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the capabilities of a Space-Based Space Surveillance (SBSS) demonstration mission for Space Surveillance and Tracking (SST) based on a micro-satellite platform. The results have been produced in the frame of ESA’s "Assessment Study for Space Based Space Surveillance Demonstration Mission" performed by the Airbus Defence and Space consortium. The assessment of SBSS in an SST system architecture has shown that both an operational SBSS and also already a well- designed space-based demonstrator can provide substantial performance in terms of surveillance and tracking of beyond-LEO objects. Especially the early deployment of a demonstrator, possible by using standard equipment, could boost initial operating capability and create a self-maintained object catalogue. Furthermore, unique statistical information about small-size LEO debris (mm size) can be collected in-situ. Unlike classical technology demonstration missions, the primary goal is the demonstration and optimisation of the functional elements in a complex end-to-end chain (mission planning, observation strategies, data acquisition, processing, etc.) until the final products can be offered to the users and with low technological effort and risk. The SBSS system concept takes the ESA SST System Requirements into account and aims at fulfilling SST core requirements in a stand-alone manner. Additionally, requirements for detection and characterisation of small-sizedLEO debris are considered. The paper presents details of the system concept, candidate micro-satellite platforms, the instrument design and the operational modes. Note that the detailed results of performance simulations for space debris coverage and cataloguing accuracy are presented in a separate paper “Capability of a Space-based Space Surveillance System to Detect and Track Objects in GEO, MEO and LEO Orbits” by J. Silha (AIUB) et al., IAC-14, A6, 1.1x25640.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reporting of outputs from health surveillance systems should be done in a near real-time and interactive manner in order to provide decision makers with powerful means to identify, assess, and manage health hazards as early and efficiently as possible. While this is currently rarely the case in veterinary public health surveillance, reporting tools do exist for the visual exploration and interactive interrogation of health data. In this work, we used tools freely available from the Google Maps and Charts library to develop a web application reporting health-related data derived from slaughterhouse surveillance and from a newly established web-based equine surveillance system in Switzerland. Both sets of tools allowed entry-level usage without or with minimal programing skills while being flexible enough to cater for more complex scenarios for users with greater programing skills. In particular, interfaces linking statistical softwares and Google tools provide additional analytical functionality (such as algorithms for the detection of unusually high case occurrences) for inclusion in the reporting process. We show that such powerful approaches could improve timely dissemination and communication of technical information to decision makers and other stakeholders and could foster the early-warning capacity of animal health surveillance systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research on the criminological side of system trespassing (i.e. unlawfully gaining access to a computer system) is relatively rare and has yet to examine the effect of the presence of other users on the system during the trespassing event (i.e. the time of communication between a trespasser’s system and the infiltrated system). This thesis seeks to analyze this relationship drawing on principles of Situational Crime Prevention, Routine Activities Theory, and restrictive deterrence. Data were collected from a randomized control trial of target computers deployed on the Internet network of a large U.S. university. This study examined whether the number (one or multiple) and type (administrative or non-administrative) of computer users present on a system reduced the seriousness and frequency of trespassing. Results indicated that the type of user (administrative) produced a restrictive deterrent effect and significantly reduced the frequency and duration of trespassing events.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Surveillance for invasive non-indigenous species (NIS) is an integral part of a quarantine system. Estimating the efficiency of a surveillance strategy relies on many uncertain parameters estimated by experts, such as the efficiency of its components in face of the specific NIS, the ability of the NIS to inhabit different environments, and so on. Due to the importance of detecting an invasive NIS within a critical period of time, it is crucial that these uncertainties be accounted for in the design of the surveillance system. We formulate a detection model that takes into account, in addition to structured sampling for incursive NIS, incidental detection by untrained workers. We use info-gap theory for satisficing (not minimizing) the probability of detection, while at the same time maximizing the robustness to uncertainty. We demonstrate the trade-off between robustness to uncertainty, and an increase in the required probability of detection. An empirical example based on the detection of Pheidole megacephala on Barrow Island demonstrates the use of info-gap analysis to select a surveillance strategy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider the problem of designing a surveillance system to detect a broad range of invasive species across a heterogeneous sampling frame. We present a model to detect a range of invertebrate invasives whilst addressing the challenges of multiple data sources, stratifying for differential risk, managing labour costs and providing sufficient power of detection.We determine the number of detection devices required and their allocation across the landscape within limiting resource constraints. The resulting plan will lead to reduced financial and ecological costs and an optimal surveillance system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents an implementation of an aircraft pose and motion estimator using visual systems as the principal sensor for controlling an Unmanned Aerial Vehicle (UAV) or as a redundant system for an Inertial Measure Unit (IMU) and gyros sensors. First, we explore the applications of the unified theory for central catadioptric cameras for attitude and heading estimation, explaining how the skyline is projected on the catadioptric image and how it is segmented and used to calculate the UAV’s attitude. Then we use appearance images to obtain a visual compass, and we calculate the relative rotation and heading of the aerial vehicle. Additionally, we show the use of a stereo system to calculate the aircraft height and to measure the UAV’s motion. Finally, we present a visual tracking system based on Fuzzy controllers working in both a UAV and a camera pan and tilt platform. Every part is tested using the UAV COLIBRI platform to validate the different approaches, which include comparison of the estimated data with the inertial values measured onboard the helicopter platform and the validation of the tracking schemes on real flights.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper is concerned with choosing image features for image based visual servo control and how this choice influences the closed-loop dynamics of the system. In prior work, image features tend to be chosen on the basis of image processing simplicity and noise sensitivity. In this paper we show that the choice of feature directly influences the closed-loop dynamics in task-space. We focus on the depth axis control of a visual servo system and compare analytically various approaches that have been reported recently in the literature. The theoretical predictions are verified by experiment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Visual localization systems that are practical for autonomous vehicles in outdoor industrial applications must perform reliably in a wide range of conditions. Changing outdoor conditions cause difficulty by drastically altering the information available in the camera images. To confront the problem, we have developed a visual localization system that uses a surveyed three-dimensional (3D)-edge map of permanent structures in the environment. The map has the invariant properties necessary to achieve long-term robust operation. Previous 3D-edge map localization systems usually maintain a single pose hypothesis, making it difficult to initialize without an accurate prior pose estimate and also making them susceptible to misalignment with unmapped edges detected in the camera image. A multihypothesis particle filter is employed here to perform the initialization procedure with significant uncertainty in the vehicle's initial pose. A novel observation function for the particle filter is developed and evaluated against two existing functions. The new function is shown to further improve the abilities of the particle filter to converge given a very coarse estimate of the vehicle's initial pose. An intelligent exposure control algorithm is also developed that improves the quality of the pertinent information in the image. Results gathered over an entire sunny day and also during rainy weather illustrate that the localization system can operate in a wide range of outdoor conditions. The conclusion is that an invariant map, a robust multihypothesis localization algorithm, and an intelligent exposure control algorithm all combine to enable reliable visual localization through challenging outdoor conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The challenge of persistent navigation and mapping is to develop an autonomous robot system that can simultaneously localize, map and navigate over the lifetime of the robot with little or no human intervention. Most solutions to the simultaneous localization and mapping (SLAM) problem aim to produce highly accurate maps of areas that are assumed to be static. In contrast, solutions for persistent navigation and mapping must produce reliable goal-directed navigation outcomes in an environment that is assumed to be in constant flux. We investigate the persistent navigation and mapping problem in the context of an autonomous robot that performs mock deliveries in a working office environment over a two-week period. The solution was based on the biologically inspired visual SLAM system, RatSLAM. RatSLAM performed SLAM continuously while interacting with global and local navigation systems, and a task selection module that selected between exploration, delivery, and recharging modes. The robot performed 1,143 delivery tasks to 11 different locations with only one delivery failure (from which it recovered), traveled a total distance of more than 40 km over 37 hours of active operation, and recharged autonomously a total of 23 times.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A recent advance in biosecurity surveillance design aims to benefit island conservation through early and improved detection of incursions by non-indigenous species. The novel aspects of the design are that it achieves a specified power of detection in a cost-managed system, while acknowledging heterogeneity of risk in the study area and stratifying the area to target surveillance deployment. The design also utilises a variety of surveillance system components, such as formal scientific surveys, trapping methods, and incidental sightings by non-biologist observers. These advances in design were applied to black rats (Rattus rattus) representing the group of invasive rats including R. norvegicus, and R. exulans, which are potential threats to Barrow Island, Australia, a high value conservation nature reserve where a proposed liquefied natural gas development is a potential source of incursions. Rats are important to consider as they are prevalent invaders worldwide, difficult to detect early when present in low numbers, and able to spread and establish relatively quickly after arrival. The ‘exemplar’ design for the black rat is then applied in a manner that enables the detection of a range of non-indigenous species of rat that could potentially be introduced. Many of the design decisions were based on expert opinion as data gaps exist in empirical data. The surveillance system was able to take into account factors such as collateral effects on native species, the availability of limited resources on an offshore island, financial costs, demands on expertise and other logistical constraints. We demonstrate the flexibility and robustness of the surveillance system and discuss how it could be updated as empirical data are collected to supplement expert opinion and provide a basis for adaptive management. Overall, the surveillance system promotes an efficient use of resources while providing defined power to detect early rat incursions, translating to reduced environmental, resourcing and financial costs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Complex surveillance problems are common in biosecurity, such as prioritizing detection among multiple invasive species, specifying risk over a heterogeneous landscape, combining multiple sources of surveillance data, designing for specified power to detect, resource management, and collateral effects on the environment. Moreover, when designing for multiple target species, inherent biological differences among species result in different ecological models underpinning the individual surveillance systems for each. Species are likely to have different habitat requirements, different introduction mechanisms and locations, require different methods of detection, have different levels of detectability, and vary in rates of movement and spread. Often there is a further challenge of a lack of knowledge, literature, or data, for any number of the above problems. Even so, governments and industry need to proceed with surveillance programs which aim to detect incursions in order to meet environmental, social and political requirements. We present an approach taken to meet these challenges in one comprehensive and statistically powerful surveillance design for non-indigenous terrestrial vertebrates on Barrow Island, a high conservation nature reserve off the Western Australian coast. Here, the possibility of incursions is increased due to construction and expanding industry on the island. The design, which includes mammals, amphibians and reptiles, provides a complete surveillance program for most potential terrestrial vertebrate invaders. Individual surveillance systems were developed for various potential invaders, and then integrated into an overall surveillance system which meets the above challenges using a statistical model and expert elicitation. We discuss the ecological basis for the design, the flexibility of the surveillance scheme, how it meets the above challenges, design limitations, and how it can be updated as data are collected as a basis for adaptive management.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article presents a visual servoing system to follow a 3D moving object by a Micro Unmanned Aerial Vehicle (MUAV). The presented control strategy is based only on the visual information given by an adaptive tracking method based on the colour information. A visual fuzzy system has been developed for servoing the camera situated on a rotary wing MAUV, that also considers its own dynamics. This system is focused on continuously following of an aerial moving target object, maintaining it with a fixed safe distance and centred on the image plane. The algorithm is validated on real flights on outdoors scenarios, showing the robustness of the proposed systems against winds perturbations, illumination and weather changes among others. The obtained results indicate that the proposed algorithms is suitable for complex controls task, such object following and pursuit, flying in formation, as well as their use for indoor navigation

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article provides a tutorial introduction to visual servo control of robotic manipulators. Since the topic spans many disciplines our goal is limited to providing a basic conceptual framework. We begin by reviewing the prerequisite topics from robotics and computer vision, including a brief review of coordinate transformations, velocity representation, and a description of the geometric aspects of the image formation process. We then present a taxonomy of visual servo control systems. The two major classes of systems, position-based and image-based systems, are then discussed in detail. Since any visual servo system must be capable of tracking image features in a sequence of images, we also include an overview of feature-based and correlation-based methods for tracking. We conclude the tutorial with a number of observations on the current directions of the research field of visual servo control.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents an image-based visual servoing system that was used to track the atmospheric Earth re-entry of Hayabusa. The primary aim of this ground based tracking platform was to record the emission spectrum radiating from the superheated gas of the shock layer and the surface of the heat shield during re-entry. To the author's knowledge, this is the first time that a visual servoing system has successfully tracked a super-orbital re-entry of a spacecraft and recorded its pectral signature. Furthermore, we improved the system by including a simplified dynamic model for feed-forward control and demonstrate improved tracking performance on the International Space Station (ISS). We present comparisons between simulation and experimental results on different target trajectories including tracking results from Hayabusa and ISS. The required performance for tracking both spacecraft is demanding when combined with a narrow field of view (FOV). We also briefly discuss the preliminary results obtained from the spectroscopy of the Hayabusa's heat shield during re-entry.