965 resultados para visible bases


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrated for the first time by large-scale ab initio calculations that a graphene/titania interface in the ground electronic state forms a charge-transfer complex due to the large difference of work functions between graphene and titania, leading to substantial hole doping in graphene. Interestingly, electrons in the upper valence band can be directly excited from graphene to the conduction band, that is, the 3d orbitals of titania, under visible light irradiation. This should yield well-separated electron−hole pairs, with potentially high photocatalytic or photovoltaic performance in hybrid graphene and titania nanocomposites. Experimental wavelength-dependent photocurrent generation of the graphene/titania photoanode demonstrated noticeable visible light response and evidently verified our ab initio prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A synthetic reevesite-like material has been shown to decolorize selected dyes and degrade phenolic contaminants photocatalytically in water when irradiated with visible light. This material can photoactively decolorize dyes such as bromophenol blue, bromocresol green, bromothymol blue, thymol blue and methyl orange in less than 15 min under visible light radiation in the absence of additional oxidizing agents. Conversely, phenolic compounds suc has phenol, p-chlorophenol and p-nitrophenol are photocat- alytically degraded in approximately 3hwith additional H2O2 when irradiated with visible light. These reactions offer potentially energy effective pathways for the removal of recalcitrant organic waste contaminants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This practice-led project has two outcomes: a collection of short stories titled 'Corkscrew Section', and an exegesis. The short stories combine written narrative with visual elements such as images and typographic devices, while the exegesis analyses the function of these graphic devices within adult literary fiction. My creative writing explores a variety of genres and literary styles, but almost all of the stories are concerned with fusing verbal and visual modes of communication. The exegesis adopts the interpretive paradigm of multimodal stylistics, which aims to analyse graphic devices with the same level of detail as linguistic analysis. Within this framework, the exegesis compares and extends previous studies to develop a systematic method for analysing how the interactions between language, images and typography create meaning within multimodal literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the practices of two teachers in a school that was successful in enabling the mathematical learning of students in Years 1 and 2, including those from backgrounds associated with low mathematical achievement. The study explained how the practices of the teachers constituted a radical visible pedagogy that enabled equitable outcomes. The study also showed that teachers’ practices have collective power to shape students’ mathematical identities. The role of the principal in the school was pivotal because she structured curriculum delivery so that students experienced the distinct practices of both teachers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skeletal muscle is a malleable tissue capable of altering the type and amount of protein in response to disruptions to cellular homeostasis. The process of exercise-induced adaptation in skeletal muscle involves a multitude of signalling mechanisms initiating replication of specific DNA genetic sequences, enabling subsequent translation of the genetic message and ultimately generating a series of amino acids that form new proteins. The functional consequences of these adaptations are determined by training volume, intensity and frequency, and the half-life of the protein. Moreover, many features of the training adaptation are specific to the type of stimulus, such as the mode of exercise. Prolonged endurance training elicits a variety of metabolic and morphological changes, including mitochondrial biogenesis, fast-to-slow fibre-type transformation and substrate metabolism. In contrast, heavy resistance exercise stimulates synthesis of contractile proteins responsible for muscle hypertrophy and increases in maximal contractile force output. Concomitant with the vastly different functional outcomes induced by these diverse exercise modes, the genetic and molecular mechanisms of adaptation are distinct. With recent advances in technology, it is now possible to study the effects of various training interventions on a variety of signalling proteins and early-response genes in skeletal muscle. Although it cannot presently be claimed that such scientific endeavours have influenced the training practices of elite athletes, these new and exciting technologies have provided insight into how current training techniques result in specific muscular adaptations, and may ultimately provide clues for future and novel training methodologies. Greater knowledge of the mechanisms and interaction of exercise-induced adaptive pathways in skeletal muscle is important for our understanding of the aetiology of disease, maintenance of metabolic and functional capacity with aging, and training for athletic performance. This article highlights the effects of exercise on molecular and genetic mechanisms of training adaptation in skeletal muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As researchers interested in the pursuit of high quality/high equity literacy learning outcomes, we focus on the learning experiences of five early years French students, with a special regard for those who are already considered as being at-risk of educational failure. We narrow the empirical focus to a single lesson on a mechanical concept of print, that is matching lower and upper case alphabet letters. In doing so, we examine a deeply philosophical question: Which pedagogical practices dis/enable what sorts of early years students as literacy learners? We extend Cazden’s (2006) notion of ‘weaving’ knowledge across dimensions of knowing to describe how the case study teacher ‘weaves’ visible and invisible pedagogies over the four movements of a lesson. The findings reveal different pedagogical framings (Bernstein, 1996) have potentially different cognitive and social effects that constitute different kinds of literacy knowledge and oppressive subject positions for at-risk students (Young, 1990).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is focus on developing new photocatalysts for synthesis of fine organic chemicals on supported nanostructures. These photocatalysts can facilitate reactions by using visible light, moderate temperature and atmospheric pressure which is suitable for a sustainable, green and eco-friendly modern chemical industry. Both Semiconductor Photocatalyst and Noble Metal Photocatalysts are designed to facilitate the homocouplings reaction of imine generation by amines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light absorption efficiency of heterogeneous catalysts has restricted their photocatalytic capability for commercially important organic synthesis. Here, we report a way of harvesting visible light efficiently to boost zeolite catalysis by means of plasmonic gold nanoparticles (Au-NPs) supported on zeolites. Zeolites possess strong Brønsted acids and polarized electric fields created by extra-framework cations. The polarized electric fields can be further intensified by the electric near-field enhancement of Au-NPs, which results from the localized surface plasmon resonance (LSPR) upon visible light irradiation. The acetalization reaction was selected as a showcase performed on MZSM-5 and Au/MZSM-5 (M = H+, Na+, Ca2+, or La3+). The density functional theory (DFT) calculations confirmed that the intensified polarized electric fields played a critical role in stretching the C = O bond of the reactants of benzaldehyde to enlarge their molecular polarities, thus allowing reactants to be activated more efficiently by catalytic centers so as to boost the reaction rates. This discovery should evoke intensive research interest on plasmonic metals and diverse zeolites with an aim to take advantage of sunlight for plasmonic devices, molecular electronics, energy storage, and catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen-doped TiO2 nanofibres of anatase and TiO2(B) phases were synthesised by a reaction between titanate nanofibres of a layered structure and gaseous NH3 at 400–700 °C, following a different mechanism than that for the direct nitrogen doping from TiO2. The surface of the N-doped TiO2 nanofibres can be tuned by facial calcination in air to remove the surface-bonded N species, whereas the core remains N doped. N-Doped TiO2 nanofibres, only after calcination in air, became effective photocatalysts for the decomposition of sulforhodamine B under visible-light irradiation. The surface-oxidised surface layer was proven to be very effective for organic molecule adsorption, and the activation of oxygen molecules, whereas the remaining N-doped interior of the fibres strongly absorbed visible light, resulting in the generation of electrons and holes. The N-doped nanofibres were also used as supports of gold nanoparticle (Au NP) photocatalysts for visible-light-driven hydroamination of phenylacetylene with aniline. Phenylacetylene was activated on the N-doped surface of the nanofibres and aniline on the Au NPs. The Au NPs adsorbed on N-doped TiO2(B) nanofibres exhibited much better conversion (80 % of phenylacetylene) than when adsorbed on undoped fibres (46 %) at 40 °C and 95 % of the product is the desired imine. The surface N species can prevent the adsorption of O2 that is unfavourable for the hydroamination reaction, and thus, improve the photocatalytic activity. Removal of the surface N species resulted in a sharp decrease of the photocatalytic activity. These photocatalysts are feasible for practical applications, because they can be easily dispersed into solution and separated from a liquid by filtration, sedimentation or centrifugation due to their fibril morphology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of the optical properties and catalytic capabilities of noble metal nanoparticles (NPs), such as gold (Au) and silver (Ag), have formed the basis for the very recent fast expansion of the field of green photocatalysis: photocatalysis utilizing visible and ultraviolet light, a major part of the solar spectrum. The reason for this growth is the recognition that the localised surface plasmon resonance (LSPR) effect of Au NPs and Ag NPs can couple the light flux to the conduction electrons of metal NPs, and the excited electrons and enhanced electric fields in close proximity to the NPs can contribute to converting the solar energy to chemical energy by photon-driven photocatalytic reactions. Previously the LSPR effect of noble metal NPs was utilized almost exclusively to improve the performance of semiconductor photocatalysts (for example, TiO2 and Ag halides), but recently, a conceptual breakthrough was made: studies on light driven reactions catalysed by NPs of Au or Ag on photocatalytically inactive supports (insulating solids with a very wide band gap) have demonstrated that these materials are a class of efficient photocatalysts working by mechanisms distinct from those of semiconducting photocatalysts. There are several reasons for the significant photocatalytic activity of Au and Ag NPs. (1) The conduction electrons of the particles gain the irradiation energy, resulting in high energy electrons at the NP surface which is desirable for activating molecules on the particles for chemical reactions. (2) In such a photocatalysis system, both light harvesting and the catalysing reaction take place on the nanoparticle, and so charge transfer between the NPs and support is not a prerequisite. (3) The density of the conduction electrons at the NP surface is much higher than that at the surface of any semiconductor, and these electrons can drive the reactions on the catalysts. (4) The metal NPs have much better affinity than semiconductors to many reactants, especially organic molecules. Recent progress in photocatalysis using Au and Ag NPs on insulator supports is reviewed. We focus on the mechanism differences between insulator and semiconductor-supported Au and Ag NPs when applied in photocatalytic processes, and the influence of important factors, light intensity and wavelength, in particular estimations of light irradiation contribution, by calculating the apparent activation energies of photo reactions and thermal reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aground-based tracking camera and coaligned slitless spectrograph were used to measure the spectral signature of visible radiation emitted from the Hayabusa capsule as it entered into the Earth’s atmosphere in June 2010. Good quality spectra were obtained, which showed the presence of radiation from the heat shield of the vehicle and the shock-heated air in front of the vehicle. An analysis of the blackbody nature of the radiation concluded that the peak average temperature of the surface was about (3100± 100)K. Line spectra from oxygen and nitrogen atoms were used to infer a peak average shock-heated gas temperature of around((7000±400))K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of a SiO2 nanolayer and annealing temperature on the UV/visible room-temperature photoluminescence (PL) from SiNx films synthesized by rf magnetron sputtering is studied. The PL intensity can be maximized when the SiO2 layer is 510 nm thick at 800 °C annealing temperature and only 2 nm at 1000 °C. A compositionstructureproperty analysis reveals that the PL intensity is directly related to both the surface chemical states and the content of the SiO and SiN bonds in the SiNx films. These results are relevant for the development of advanced optoelectronic and photonic emitters and sensors. © 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the film thickness and postannealing temperature on visible photoluminescence (PL) from Si Nx films synthesized by plasma-assisted radio frequency magnetron sputtering on Si O2 buffer layers is investigated. It is shown that strong visible PL is achieved at annealing temperatures above 650 °C. The optimum annealing temperature for the maximum PL yield strongly depends on the film thickness and varies from 800 to 1200°C. A comparative composition-structure-property analysis reveals that the PL intensity is directly related to the content of the Si-O and Si-N bonds in the Si Nx films. Therefore, sufficient oxidation and moderate nitridation of Si Nx Si O2 films during the plasma-based growth process are crucial for a strong PL yield. Excessively high annealing temperatures lead to weakened Si-N bonds in thinner Si Nx films, which eventually results in a lower PL intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanate nanotubes (TNT) supported AgI nanoparticles were prepared by a two-step method: the deposition of Ag2O on titanate nanotubes from AgNO3 solution and the subsequent I-adsorption process from NaI solution. It is found that the supported AgI samples exhibited excellent photoactivity for the selective oxidation of benzylamine to the corresponding imine under visible light illumination and the photocatalyst can be used for many times without apparent activity loss. X-ray diffraction studies, transmission electron microscopy, diffuse reflectance UV-Vis spectroscopy and nitrogen adsorption measurements were used for the characterization of the as-prepared and recycled AgI samples. It is found that under visible light irradiation, AgI partially decomposed to produce Ag/AgI nanostructure and thus stabilized. The photoactivity of supported Ag/AgI for the selective oxidation of benzylamine was studied in terms of the light intensity, wavelength, temperature and substituent. It is proposed that the formation of plasmonic Ag nanoparticles should be responsible for the high activity and selectivity.