975 resultados para virgin queen


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compare the primary sex ratio (proportion o haploid eggs laid by queens) and the secondary sex ratio (proportion of male pupae produced) in the Argentine ant Iridomyrmex humilis with the aim of investigating whether workers control the secondary sex ratio by selectively eliminating male brood. The proportion of haploid eggs produced by queens was close to 0.5 in late winter, decreased to less than 0.3 in spring and summer, and increased again to a value close to 0.5 in fall. Laboratory experiments indicate that temperture is a proximate factor influencing the primary sex ratio with a higher proportion of haploid eggs being laid at colder temperatures. Production of queen pupae ceased in mid-June, about three weeks before that of male pupae. After this time only worker pupae were produced. During the period of production of sexuals, the proportion of male pupae ranged from 0.30 to 0.38. Outside this period no males were reared although haploid eggs were produced all the year round by queens. Workers thus exert a control on the secondary sex ratio by eliminating a proportion of the male brood during the period of sexual production and eliminating all the males during the remainder of the cycle. These data are consistent with workers preferring a more female-biased sex ratio than queens. The evolutionary significance of the production of male eggs by queens all the year round is as yet unclear. It may be a mechanism allowing queen replacement in the case of the death of the queens in the colony.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colony social organization in the fire ant Solenopsis invicta appears to be under strong genetic control. In the invasive USA range, polygyny (multiple queens per colony) is marked by the presence of the Gp-9(b) allele in most of a colony's workers, whereas monogyny (single queen per colony) is associated with the exclusive occurrence of the Gp-9(B) allele. Ross and Keller, Behav Ecol Sociobiol 51:287-295 (2002) experimentally manipulated social organization by cross-fostering queens into colonies of the alternate form, thereby changing adult worker Gp-9 genotype frequencies over time. Although these authors showed that social behavior switched predictably when the frequency of b-bearing adult workers crossed a threshold of 5-10%, the possibility that queen effects caused the conversions could not be excluded entirely. We addressed this problem by fostering polygyne brood into queenright monogyne colonies. All such treatment colonies switched social organization to become polygyne, coincident with their proportions of b-bearing workers exceeding 12%. Our results support the conclusion that polygyny in S. invicta is induced by a minimum frequency of colony workers carrying the b allele, and further confirm that its expression is independent of queen genotype or history, worker genotypes at genes not linked to Gp-9, and colony genetic diversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RÉSUMÉ GRAND PUBLIC La complexité des sociétés d'insectes (telles que les abeilles, les termites ou les fourmis) a depuis longtemps fasciné l'Homme. Depuis le débfit du XIXème siècle, de nombreux travaux observationnels, comportementaux et théoriques leur on été consacrés afin de mieux les décrire et comprendre. L'avènement de la biologie moléculaire à la fin du XXèrne siècle a offert de nouveaux outils scientifiques pour identifier et étudier les gènes et molécules impliqués dans le développement et le comportement des êtres vivants. Alors que la majorité de ces études s'est focalisée sur des organismes de laboratoire tel que la mouche ou les nématodes, l'utilisation de ces outils est restée marginale jusqu'à présent dans l'étude des sociétés d'insectes. Lors de ma thèse, j'ai développé des outils moléculaires permettant de déterminer le niveau d'activité de zo,ooo gènes chez la fourmi de feu, Solenopsis invicta, ainsi qu'une base de données et un portail en ligne regroupant les informations relatives à l'étude génétique des fourmis: Fourmidable. J'ai ensuite utilisé ces outils dans le cadre d'une étude comportementale chez la fourmis S. invicta. Dans les sociétés d'insectes, une hiérarchie peut déterminer le statut reproducteur des individus. Suite à la mort d'un dominant, les subordonnés entrent en compétition en vue d'améliorer leur statut. Un tel phénomène se produit au sein des colonies de S. invicta contenant une unique reine mère, des milliers d'ouvrières et des centaines de reines vierges ailées. A la mort de la reine mère, un grand nombre de reines vierges tentent de la remplacer en arrachant leurs ailes et en activant leurs organes reproducteurs plutôt que de partir en vol nuptial. Ces tentatives sont le plus souvent arrêtées par les ouvrières qui exécutent la plupart de ces reines sur la base de signaux olfactifs produits lors de l'activation des organes reproducteurs. Afin de mieux comprendre les mécanismes moléculaires impliqués, j'ai étudié l'activité de gènes au sein des reines au début de ce processus. J'ai ainsi déterminé que des gènes impliqués dans communication olfactive, le développement des organes reproducteurs et la métabolisation de l'hormone juvénile sont activês à ce moment là. La vitesse à laquelle les reines perdent leurs ailes ainsi que les niveaux d'expression de gènes sont ensuite liés à leur probabilité de survie. ABSTRACT : Honeybees, termites and ants occupy the "pinnacle of social evolution" with societies of a complexity that rivals our own. Humans have long been fascinated by social insects, but studying them has been mostly limited to observational and behavioral experiments. The advent of molecular biology first made it possible to investigate the molecular-genetic basis of development in model systems such as the fruit fly Drosophila melarcogaster or the roundworm Caenorhabditis elegans and subsequently their behavior. Molecular and genomic tools are now becoming available for the study of social insects as well. To permit genomic research on the fire ant, Solenopsis invicta, we developed a cDNA microarray that can simultaneously determine the expression levels of approximately 1oooo genes. These genes were assembled and bioinformatically annotated using custom pipelines. The obtained data formed the cornerstones for Fourmidable, a web portal centralizing sequence, gene annotation and gene expression data as well as laboratory protocols for research on ants. In many animals living in groups the reproductive status of individuals is determined by their social status. In species with social hierarchies, the death of dominant individuals typically upheaves the social hierarchy and provides an opportunity for subordinate individuals to improve their social status. Such a phenomenon occurs in the monogyne form of S. invicta, where colonies typically contain a single wingless reproductive queen, thousands of workers and hundreds of winged non-reproductive virgin queens. Upon the death of the mother queen, many virgin queens shed their wings and initiate reproductive development instead of departing on a mating flight. Workers progressively execute almost all of them over the following weeks. The workers base their collective decision on pheromonal cues associated with the onset of reproductive development of the virgin queens which occurs after orphaning. We used the aforementioned tools to determine that genes putatively involved in processes including olfactory signaling, reproductive development and Juvenile Hormone metabolism are differentially expressed at the onset of competition. Additionally, we found that queens that initiate reproductive development faster and, to a certain extent, shed their wings faster after orphaning are more likely to become replacement queens. These results provide candidate genes that are putatively linked to competition outcome. To determine the extent to which specific genes affect different aspects of life in ant colonies, functional tests such as gene activation and silencing will still be required. We conclude by discussing some of the challenges and opportunities for molecular-genetic research on ants. RÉSUMÉ Les sociétés d'abeilles, de termites et de fourmis sont d'une complexité proche de celle de la nôtre et ont depuis longtemps fasciné l'Homme. Cependant, leur étude était jusqu'à présent limitée aux observations et expériences comportementales. L'avènement de la biologie moléculaire a d'abord rendu possible l'étude moléculaire et génétique du développement d'organismes modèles tels que la mouche Drosophila melanogaster ou le nématode Caenorhabditis elegans, puis dans un second temps de leur comportement. De telles études deviennent désormais possibles pour les insectes sociaux. Nous avons développé une puce à ADN permettant de déterminer simultanément les niveaux d'expression de 1oooo gènes de la fourmi de feu, Solenopsís invicta. Ces gènes ont été séquencés puis assemblés et annotés à l'aide de pipelines que nous avons développés. En se basant sur les informations obtenues, nous avons créé un portail web, Fourmidable. Ce portail vise à centraliser toutes les informations de séquence, d'annotation et d'expression de gènes, ainsi que les protocoles de laboratoire utilisés pour la recherche sur les fourmis. Par la suite, nous avons utilisé les outils développés pour étudier un aspect particulier de S. invicta. Chez les animaux grégaires, une hiérarchie sociale peut déterminer le statut reproducteur des individus. Suite à la mort d'un individu dominant, les individus subordonnés peuvent entrer en compétition en vue d'améliorer leur statut. Un tel phénomène se produit au sein des colonies monogynes de S. invicta, qui contiennent habituellement une unique reine mère, des milliers d'ouvrières et des centaines de reines vierges ailées. Suite à la mort de la reine mère, dominante, un grand nombre de reines vierges, subordonnées, perdent leurs ailes et activent leurs organes reproducteurs au lieu de partir en vol nuptial. Au cours des semaines suivantes, les ouvrières exécutent la plupart de ces reines sur la base de signaux olfactifs produits lors de l'activation des organes reproducteurs. Afin de mieux comprendre les mécanismes moléculaires impliqués, nous avons étudié l'expression de gènes au début de cette compétition. Nous avons identifié 297 gènes différemment exprimés, dont l'annotation indique qu'ils seraient impliqués dans des processus biologiques dont la communication olfactive, le développement des organes reproducteurs et la métabolisation de l'hormone juvénile. Par la suite, nous avons déterminé que la vitesse à laquelle les reines perdent leurs ailes en début de compétition ainsi que les niveaux d'expression de gènes sont corrélés à la probabilité de survie des reines. Nous concluons en discutant des opportunités offertes par la recherche génétique sur les fourmis ainsi que les défis qu'elle devra surmonter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Risella Carter and Laxtorum Blome, two genera from the diverse Rhaetian fauna of the Sandilands Formation, Queen Charlotte Islands, are used to illustrate phyletic trends in latest Triassic Radiolaria. Several distinct morphotypes constituting a lineage are recognized for each genus. These lineages are homogenous, evolved in situ, and show a continuum of variation through time. The evolution of Risella takes place entirely in the Rhaetian and all species disappear at the end of the Triassic. Earliest species of Laxtorum appear in the upper Norian and evolve rapidly in the Rhaetian. All Rhaetian species go extinct at the end of the Triassic but the genus survives marginally into the Lower Jurassic. Morphological transformations in Risella (a paronaellid) are manifest in the external/cortical shell as the shape changes from triangular to three-rayed. In Laxtorum, distal post abdominal chambers become constricted and eventually develop a terminal tube while, at the same time, an increase in size and sphericity is coupled with a reduction in the number of post abdominal chambers. Evolutionary transitions in the Risella lineage probably represent a reversion of the normal hypothesized trend for paronaellid radiolarians. In the Laxtorum lineage, comparisons with other groups and species displaying similar homeomorphies suggest the evolutionary trends are fundamental and occur repeatedly in faunas of all ages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In social animals, body size can be shaped by multiple factors, such as direct genetic effects, maternal effects, or the social environment. In ants, the body size of queens correlates with the social structure of the colony: colonies headed by a single queen (monogyne) generally produce larger queens that are able to found colonies independently, whereas colonies headed by multiple queens (polygyne) tend to produce smaller queens that stay in their natal colony or disperse with workers. We performed a cross-fostering experiment to investigate the proximate causes of queen size variation in the socially polymorphic ant Formica selysi. As expected if genetic or maternal effects influence queen size, eggs originating from monogyne colonies developed into larger queens than eggs collected from polygyne colonies, be they raised by monogyne or polygyne workers. In contrast, eggs sampled in monogyne colonies were smaller than eggs sampled in polygyne colonies. Hence, eggs from monogyne colonies are smaller but develop into larger queens than eggs from polygyne colonies, independently of the social structure of the workers caring for the brood. These results demonstrate that a genetic polymorphism or maternal effect transmitted to the eggs influences queen size, which probably affects the social structure of new colonies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Societies of ants, bees, wasps and termites dominate many terrestrial ecosystems (Wilson 1971). Their evolutionary and ecological success is based upon the regulation of internal conflicts (e.g. Ratnieks et al. 2006), control of diseases (e.g. Schmid-Hempel 1998) and individual skills and collective intelligence in resource acquisition, nest building and defence (e.g. Camazine 2001). Individuals in social species can pass on their genes not only directly trough their own offspring, but also indirectly by favouring the reproduction of relatives. The inclusive fitness theory of Hamilton (1963; 1964) provides a powerful explanation for the evolution of reproductive altruism and cooperation in groups with related individuals. The same theory also led to the realization that insect societies are subject to internal conflicts over reproduction. Relatedness of less-than-one is not sufficient to eliminate all incentive for individual selfishness. This would indeed require a relatedness of one, as found among cells of an organism (Hardin 1968; Keller 1999). The challenge for evolutionary biology is to understand how groups can prevent or reduce the selfish exploitation of resources by group members, and how societies with low relatedness are maintained. In social insects the evolutionary shift from single- to multiple queens colonies modified the relatedness structure, the dispersal, and the mode of colony founding (e.g. (Crozier & Pamilo 1996). In ants, the most common, and presumably ancestral mode of reproduction is the emission of winged males and females, which found a new colony independently after mating and dispersal flights (Hölldobler & Wilson 1990). The alternative reproductive tactic for ant queens in multiple-queen colonies (polygyne) is to seek to be re-accepted in their natal colonies, where they may remain as additional reproductives or subsequently disperse on foot with part of the colony (budding) (Bourke & Franks 1995; Crozier & Pamilo 1996; Hölldobler & Wilson 1990). Such ant colonies can contain up to several hundred reproductive queens with an even more numerous workforce (Cherix 1980; Cherix 1983). As a consequence in polygynous ants the relatedness among nestmates is very low, and workers raise brood of queens to which they are only distantly related (Crozier & Pamilo 1996; Queller & Strassmann 1998). Therefore workers could increase their inclusive fitness by preferentially caring for their closest relatives and discriminate against less related or foreign individuals (Keller 1997; Queller & Strassmann 2002; Tarpy et al. 2004). However, the bulk of the evidence suggests that social insects do not behave nepotistically, probably because of the costs entailed by decreased colony efficiency or discrimination errors (Keller 1997). Recently, the consensus that nepotistic behaviour does not occur in insect colonies was challenged by a study in the ant Formica fusca (Hannonen & Sundström 2003b) showing that the reproductive share of queens more closely related to workers increases during brood development. However, this pattern can be explained either by nepotism with workers preferentially rearing the brood of more closely related queens or intrinsic differences in the viability of eggs laid by queens. In the first chapter, we designed an experiment to disentangle nepotism and differences in brood viability. We tested if workers prefer to rear their kin when given the choice between highly related and unrelated brood in the ant F. exsecta. We also looked for differences in egg viability among queens and simulated if such differences in egg viability may mistakenly lead to the conclusion that workers behave nepotistically. The acceptance of queens in polygnous ants raises the question whether the varying degree of relatedness affects their share in reproduction. In such colonies workers should favour nestmate queens over foreign queens. Numerous studies have investigated reproductive skew and partitioning of reproduction among queens (Bourke et al. 1997; Fournier et al. 2004; Fournier & Keller 2001; Hammond et al. 2006; Hannonen & Sundström 2003a; Heinze et al. 2001; Kümmerli & Keller 2007; Langer et al. 2004; Pamilo & Seppä 1994; Ross 1988; Ross 1993; Rüppell et al. 2002), yet almost no information is available on whether differences among queens in their relatedness to other colony members affects their share in reproduction. Such data are necessary to compare the relative reproductive success of dispersing and non-dispersing individuals. Moreover, information on whether there is a difference in reproductive success between resident and dispersing queens is also important for our understanding of the genetic structure of ant colonies and the dynamics of within group conflicts. In chapter two, we created single-queen colonies and then introduced a foreign queens originating from another colony kept under similar conditions in order to estimate the rate of queen acceptance into foreign established colonies, and to quantify the reproductive share of resident and introduced queens. An increasing number of studies have investigated the discrimination ability between ant workers (e.g. Holzer et al. 2006; Pedersen et al. 2006), but few have addressed the recognition and discrimination behaviour of workers towards reproductive individuals entering colonies (Bennett 1988; Brown et al. 2003; Evans 1996; Fortelius et al. 1993; Kikuchi et al. 2007; Rosengren & Pamilo 1986; Stuart et al. 1993; Sundström 1997; Vásquez & Silverman in press). These studies are important, because accepting new queens will generally have a large impact on colony kin structure and inclusive fitness of workers (Heinze & Keller 2000). In chapter three, we examined whether resident workers reject young foreign queens that enter into their nest. We introduced mated queens into their natal nest, a foreign-female producing nest, or a foreign male-producing nest and measured their survival. In addition, we also introduced young virgin and mated queens into their natal nest to examine whether the mating status of the queens influences their survival and acceptance by workers. On top of polgyny, some ant species have evolved an extraordinary social organization called 'unicoloniality' (Hölldobler & Wilson 1977; Pedersen et al. 2006). In unicolonial ants, intercolony borders are absent and workers and queens mix among the physically separated nests, such that nests form one large supercolony. Super-colonies can become very large, so that direct cooperative interactions are impossible between individuals of distant nests. Unicoloniality is an evolutionary paradox and a potential problem for kin selection theory because the mixing of queens and workers between nests leads to extremely low relatedness among nestmates (Bourke & Franks 1995; Crozier & Pamilo 1996; Keller 1995). A better understanding of the evolution and maintenance of unicoloniality requests detailed information on the discrimination behavior, dispersal, population structure, and the scale of competition. Cryptic genetic population structure may provide important information on the relevant scale to be considered when measuring relatedness and the role of kin selection. Theoretical studies have shown that relatedness should be measured at the level of the `economic neighborhood', which is the scale at which intraspecific competition generally takes place (Griffin & West 2002; Kelly 1994; Queller 1994; Taylor 1992). In chapter four, we conducted alarge-scale study to determine whether the unicolonial ant Formica paralugubris forms populations that are organised in discrete supercolonies or whether there is a continuous gradation in the level of aggression that may correlate with genetic isolation by distance and/or spatial distance between nests. In chapter five, we investigated the fine-scale population structure in three populations of F. paralugubris. We have developed mitochondria) markers, which together with the nuclear markers allowed us to detect cryptic genetic clusters of nests, to obtain more precise information on the genetic differentiation within populations, and to separate male and female gene flow. These new data provide important information on the scale to be considered when measuring relatedness in native unicolonial populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virgin T cells being primed to Th2-inducing or Th1-inducing Ags, respectively, start to synthesize IL-4 or IFN-gamma as they begin to proliferate. Parallel respective induction of B cells to produce gamma1 or gamma2a switch transcripts provides additional evidence of early divergent Th activity. This report concerns the roles of IL-4, IL-13, and B cells in these early events in vivo. Th2 responses were induced in lymph nodes against hapten-protein given s.c. with killed Bordetella pertussis adjuvant. In T cell proliferation in wild-type mice, IL-4 message up-regulation and gamma1 and epsilon switch transcript production were underway 48-72 h after immunization. The absence of IL-4, IL-13, or B cells did not alter the early T cell proliferative response. The gamma1 and epsilon switch transcript production was still induced in the absence of IL-4, IL-13, or both, but at a reduced level, while the dominance of switching to IgG1 in the extrafollicular hapten-specific plasma cell response was retained. The up-regulation of IL-4 message was not reduced or delayed in the absence of B cells and was only marginally reduced by the absence of IL-13. It is concluded that signals delivered by dendritic cells, which are not dependent on the presence of IL-4, IL-13, or B cells, can prime virgin T cells and induce the early Th2 activities studied. These early events that direct virgin T cells toward Th2 differentiation contrast with the critical later role of Th2 cytokines in selectively expanding Th2 clones and driving further IL-4 synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect societies are paramount examples of cooperation, yet they also harbor internal conflicts whose resolution depends on the power of the opponents. The male-haploid, female-diploid sex-determining system of ants causes workers to be more related to sisters than to brothers, whereas queens are equally related to daughters and sons. Workers should thus allocate more resources to females than to males, while queens should favor an equal investment in each sex. Female-biased sex allocation and manipulation of the sex ratio during brood development suggest that workers prevail in many ant species. Here, we show that queens of Formica selysi strongly influenced colony sex allocation by biasing the sex ratio of their eggs. Most colonies specialized in the production of a single sex. Queens in female-specialist colonies laid a high proportion of diploid eggs, whereas queens in male-specialist colonies laid almost exclusively haploid eggs, which constrains worker manipulation. However, the change in sex ratio between the egg and pupae stages suggests that workers eliminated some male brood, and the population sex-investment ratio was between the queens' and workers' equilibria. Altogether, these data provide evidence for an ongoing conflict between queens and workers, with a prominent influence of queens as a result of their control of egg sex ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variation in queen number alters the genetic structure of social insect colonies, which in turn affects patterns of kin-selected conflict and cooperation. Theory suggests that shifts from single- to multiple-queen colonies are often associated with other changes in the breeding system, such as higher queen turnover, more local mating, and restricted dispersal. These changes may restrict gene flow between the two types of colonies and it has been suggested that this might ultimately lead to sympatric speciation. We performed a detailed microsatellite analysis of a large population of the ant Formica selysi, which revealed extensive variation in social structure, with 71 colonies headed by a single queen and 41 by multiple queens. This polymorphism in social structure appeared stable over time, since little change in the number of queens per colony was detected over a five-year period. Apart from queen number, single- and multiple-queen colonies had very similar breeding systems. Queen turnover was absent or very low in both types of colonies. Single- and multiple-queen colonies exhibited very small but significant levels of inbreeding, which indicates a slight deviation from random mating at a local scale and suggests that a small proportion of queens mate with related males. For both types of colonies, there was very little genetic structuring above the level of the nest, with no sign of isolation by distance. These similarities in the breeding systems were associated with a complete lack of genetic differentiation between single- and multiple-queen colonies, which provides no support for the hypothesis that change in queen number leads to restricted gene flow between social forms. Overall, this study suggests that the higher rates of queen turnover, local mating, and population structuring that are often associated with multiple-queen colonies do not appear when single- and multiple-queen colonies still coexist within the same population, but build up over time in populations consisting mostly of multiple-queen colonies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Queens in social insect colonies advertise their presence in the colony to: a) attract workers' attention and care; b) gain acceptance by workers as replacement or supplemental reproductives; c) prevent reproductive development in nestmates. We analyzed the chemical content of whole body surface extracts of adult queens of different developmental and reproductive stages, and of adult workers from monogyne (single colony queen) and polygyne (multiple colony queens) forms of the fire ant Solenopsis invicta. We found that the composition of the most abundant components, venom alkaloids, differed between queens and workers, as well as between reproductive and non-reproductive queens. Additionally, workers of the two forms could be distinguished by alkaloid composition. Finally, sexually mature, non-reproductive queens from polygyne colonies differed in their proportions of cis-piperidine alkaloids, depending on their Gp-9 genotype, although the difference disappeared once they became functional reproductives. Among the unsaturated cuticular hydrocarbons characteristic of queens, there were differences in amounts of alkenes/alkadienes between non-reproductive polygyne queens of different Gp-9 genotypes, between non-reproductive and reproductive queens, and between polygyne and monogyne reproductive queens, with the amounts increasing at a relatively higher rate through reproductive ontogeny in queens bearing the Gp-9 b allele. Given that the genotype-specific piperidine differences reflect differences in rates of reproductive maturation between queens, we speculate that these abundant and unique compounds have been co-opted to serve in fertility signaling, while the cuticular hydrocarbons now play a complementary role in regulation of social organization by signaling queen Gp-9 genotype.