996 resultados para velocity change


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sites 815 and 817 were drilled near the Townsville Trough during Leg 133 of the Ocean Drilling Program. The physical properties, compressional-wave velocity, and consolidation characteristics indicate that the periplatform carbonate sediments maintain more water content and lower compressional velocity near the Queensland Plateau than the clayey hemipelagic sediments, which have a clay content of up to 60%. Bulk density, void ratio or porosity, water content, and compressional-wave velocity are shown to have a linear relationship with burial depth. Between 3.5 and 5 Ma (about 100-500 mbsf), these physical properties maintained a constant rate vs. the depth in core because of the fast sedimentation-rate effect at Site 815. However, compressionalwave velocity still increases downward in this section. The clay content in this section causes an increase of bulk modulus and compaction effect. At Site 817, scarce terrigenous mud content and abundant carbonate content (88%-97%) cause a straight line relationship between physical properties and burial depth. During the consolidation test, we show that dominant micritic particles may cause faster acoustic velocity than sediments composed mainly of coccoliths. The bulk modulus ratio increasing rate in the clay-rich carbonate sediments is almost 4.5 times higher than in the clay-free periplatform carbonate sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthetic seismograms provide a crucial link between lithologic variations within a drill hole and reflectors on seismic profiles crossing the site. In essence, they provide a ground-truth for the interpretation of seismic data. Using a combination of core and logging data, we created synthetic seismograms for Ocean Drilling Program Sites 1165 and 1166, drilled during Leg 188, and Site 742, drilled during Leg 119, all in Prydz Bay, Antarctica. Results from Site 1165 suggest that coring penetrated a target reflector initially thought to represent the onset of drift sedimentation, but the lithologic change across the boundary does not show a change from predrift to drift sediments. The origin of a shallow reflector packet in the seismic line across Site 1166 and a line connecting Sites 1166 and 742 was resolved into its constituent sources, as this reflector occurs in a region of large-scale, narrowly spaced impedance changes. Furthermore, Site 1166 was situated in a fluvio-deltaic system with widely variable geology, and bed thickness changes were estimated between the site and both seismic lines.