903 resultados para variable structure system
Resumo:
The mature dentinoenamel junction (DEJ) is viewed by some investigators and the current authors, not as a fossilized, sharp transition between enamel and dentin, but as a relatively broad structural transition zone including the mantle dentin and the inner aprismatic enamel. In this study, the DEJ structure in bovine incisors was studied with synchrotron microComputed Tomography (microCT) using small cubes cut parallel to the tooth surface. The reconstructions revealed a zone of highly variable punctate contrast between bulk dentin and enamel; the mean linear attenuation coefficients and their standard deviations demonstrated that this zone averaged less mineral than dentin or enamel but had more highly variable structure than either. The region with the punctuate contrast is, therefore, the mantle dentin. The thickness of the mantle dentin seen in a typical data set was about 30 mu m, and the mantle dentin-enamel interface deviated +/- 15 mu m from the average plane over a distance of 520 mu m. In the highest resolution data (similar to 1.5 mu m isotropic voxels, volume elements), tubules in the dentin could be discerned in the vicinity of the DEJ. Contrast sensitivity was high enough to detect differences in mineral content between near-surface and near-DEJ volumes of the enamel. Reconstructions before and after two cubes were compressed to failure revealed cracks formed only in the enamel and did not propagate across the mantle dentin, regardless of whether loading was parallel to or perpendicular to the DEJ. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, a trajectory tracking control problem for a nonholonomic mobile robot by the integration of a kinematic neural controller (KNC) and a torque neural controller (TNC) is proposed, where both the kinematic and dynamic models contains disturbances. The KNC is a variable structure controller (VSC) based on the sliding mode control theory (SMC), and applied to compensate the kinematic disturbances. The TNC is a inertia-based controller constituted of a dynamic neural controller (DNC) and a robust neural compensator (RNC), and applied to compensate the mobile robot dynamics, and bounded unknown disturbances. Stability analysis with basis on Lyapunov method and simulations results are provided to show the effectiveness of the proposed approach. © 2012 Springer-Verlag.
Resumo:
A mastite em sua forma subclinica é a responsável pelas maiores perdas de produção leiteira representando elevados prejuízos econômicos. Com o objetivo de estudar a etiologia da mastite subclinica bovina no município de Parauapebas-Pa, foram submetidas ao California Mastitis test. - CMT 174 (8,4%) vacas em sua maioria mestiças, aparentemente saudáveis de 15 propriedades leiteiras localizadas no referido município, situado na Mesorregião Sudeste do estado do Pará. Observou-se que 84 (48,33%) animais apresentaram resultados de +,++,+++ ao CMT. O leite de cada teto que reagiram ao CMT num total de 178 amostras foi analisado bacteriologicamente visando o isolamento e a identificação dos microorganismos, foram analisadas as características macroscópicas, microscópicas e bioquímicas das culturas isoladas. Do total de amostras foram isoladas 208 cepas de agentes microbianos em culturas puras ou em associações sendo todos provenientes de leite mamitico, das quais 141(67,79%) cepas eram cocos Gram positivos- S.aureus (29%) e S.epidermidis (19,14%) e 67 (32,21%) eram enterobactérias. Entre as enterobacterias destacaram-se Pseudomonas sp.com 12 (17,91%) cepas esisoladas, Citrobacter sp. com 12( 17,95%) cepas e Shigella sp. com 10(14,92%), Outras 15 cepas de enterobacterias que não foram identificadas. O isolamento dos agentes apresentou variação significativa, pois se consideraram as observações quanto ao manejo de ordenha dos animais estudados, as condições higiênicas sanitárias da obtenção do leite através da aplicação de um questionário visando a observação das seguintes variáveis: sistema de criação, manejo adotado na propriedade, higiene e nível de exposição, infecciosidade dos agentes isolados o que reafirma a complexidade da infecção na área de estudo e seu aspecto multifatorial, necessitando o investimento por parte dos órgãos fiscalizadores de melhores praticas de higiene e obtenção na atividade de exploração de leite.
Resumo:
2-Cys peroxiredoxin (Prx) enzymes are ubiquitously distributed peroxidases that make use of a peroxidatic cysteine (Cys(P)) to decompose hydroperoxides. A disulfide bond is generated as a consequence of the partial unfolding of the alpha-helix that contains Cys(P). Therefore, during its catalytic cycle, 2-Cys Prx alternates between two states, locally unfolded and fully folded. Tsa1 (thiol-specific antioxidant protein 1 from yeast) is by far the most abundant Cys-based peroxidase in Saccharomyces cerevisiae. In this work, we present the crystallographic structure at 2.8 angstrom resolution of Tsa1(C47S) in the decameric form [(alpha(2))(5)] with a DTT molecule bound to the active site, representing one of the few available reports of a 2-Cys Prx (AhpC-Prx1 subfamily) (AhpC, alkyl hydroperoxide reductase subunit C) structure that incorporates a ligand. The analysis of the Tsa1(C47S) structure indicated that G1u50 and Arg146 participate in the stabilization of the Cys(P) alpha-helix. As a consequence, we raised the hypothesis that G1u50 and Arg146 might be relevant to the Cys(P) reactivity. Therefore, Tsa1(E50A) and Tsa1(R146Q) mutants were generated and were still able to decompose hydrogen peroxide, presenting a second-order rate constant in the range of 10(6) M-1 S-1. Remarkably, although Tsa1(E50A) and Tsa1(R146Q) were efficiently reduced by the low-molecular-weight reductant DTT, these mutants displayed only marginal thioredoxin (Trx)-dependent peroxidase activity, indicating that G1u50 and Arg146 are important for the Tsa1-Trx interaction. These results may impact the comprehension of downstream events of signaling pathways that are triggered by the oxidation of critical Cys residues, such as Trx. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Software Product Line Engineering has significant advantages in family-based software development. The common and variable structure for all products of a family is defined through a Product-Line Architecture (PLA) that consists of a common set of reusable components and connectors which can be configured to build the different products. The design of PLA requires solutions for capturing such configuration (variability). The Flexible-PLA Model is a solution that supports the specification of external variability of the PLA configuration, as well as internal variability of components. However, a complete support for product-line development requires translating architecture specifications into code. This complex task needs automation to avoid human error. Since Model-Driven Development allows automatic code generation from models, this paper presents a solution to automatically generate AspectJ code from Flexible-PLA models previously configured to derive specific products. This solution is supported by a modeling framework and validated in a software factory.
Resumo:
An approximate procedure for studying harmonic soil-structure interaction problems is presented. The presence of Rayleigh waves is considered and the resulting governing equations of the dynamic soil-structure system are solved in the time domain. With this method the transient and steady states of a vibratory motion and also the nonlinear behaviour of the soil can be studied. As an example, the dynamic earth pressure against a rigid retaining wall is investigated. The loads are assumed to be harmonic Rayleigh waves with both static and dynamic surface surcharges. The dependence of the results on the excitation frequency is shown.
Resumo:
La influencia de un fluido en las características dinámicas de estructuras se ha estudiado desde hace tiempo. Sin embargo muchos estudios se refieren a aplicaciones bajo el agua, como es el caso del sonar de un submarino por lo que el fluido circundante se considera líquido (sin efectos de compresibilidad). Más recientemente en aplicaciones acústicas y espaciales tales como antenas o paneles muy ligeros, ha sido estudiada la influencia en las características dinámicas de una estructura rodeada por un fluido de baja densidad. Por ejemplo se ha mostrado que el efecto del aire en el transmisor-reflector del Intelsat VI C-B con un diámetro de 3,2 metros y con un peso de sólo 34,7 kg disminuye la primera frecuencia en torno a un 20% con respecto a su valor en vacío. Por tanto es importante en el desarrollo de estas grandes y ligeras estructuras disponer de un método con el que estimar el efecto del fluido circundante sobre las frecuencias naturales de éstas. De esta manera se puede evitar el ensayo de la estructura en una cámara de vacío que para el caso de una gran antena o panel puede ser difícil y costoso. Se ha desarrollado un método de elementos de contorno (BEM) para la determinación del efecto del fluido en las características dinámicas de una placa circular. Una vez calculados analíticamente los modos de vibración de la placa en vacío, la matriz de masa añadida debido a la carga del fluido se determina por el método de elementos de contorno. Este método utiliza anillos circulares de manera que el número de elementos para obtener unos resultados precisos es muy bajo. Se utiliza un procedimiento de iteración para el cálculo de las frecuencias naturales del acoplamiento fluido-estructura para el caso de fluido compresible. Los resultados del método se comparan con datos experimentales y otros modelos teóricos mostrando la precisión y exactitud para distintas condiciones de contorno de la placa. Por otro lado, a veces la geometría de la placa no es circular sino casi-circular y se ha desarrollado un método de perturbaciones para determinar la influencia de un fluido incompresible en las características dinámicas de placas casi-circulares. El método se aplica a placas con forma elíptica y pequeña excentricidad. Por una parte se obtienen las frecuencias naturales y los modos de deformación de la placa vibrando en vacío. A continuación, se calculan los coeficientes adimensionales de masa virtual añadida (factores NAVMI). Se presentan los resultados de estos factores y el efecto del fluido en las frecuencias naturales. ABSTRACT The influence of the surrounding fluid on the dynamic characteristics of structures has been well known for many years. However most of these works were more concerned with underwater applications, such as the sonar of a submarine and therefore the surrounding fluid was considered a liquid (negligible compressibility effects). Recently for acoustical and spatial applications such as antennas or very light panels the influence on the dynamic characteristics of a structure surrounded by a fluid of low density has been studied. Thus it has been shown that the air effect for the Intelsat VI C-B transmit reflector with a diameter of 3,2 meters and weighting only 34,7 kg decreases the first modal frequency by 20% with respect to the value in vacuum. It is important then, in the development of these light and large structures to have a method that estimates the effect that the surrounding fluid will have on the natural frequencies of the structure. In this way it can be avoided to test the structure in a vacuum chamber which for a large antenna or panel can be difficult and expensive A BEM method for the determination of the effect of the surrounding fluid on the dynamic characteristics of a circular plate has been developed. After the modes of the plate in vacuum are calculated in an analytical form, the added mass matrix due to the fluid loading is determined by a boundary element method. This method uses circular rings so the number of elements to obtain an accurate result is very low. An iteration procedure for the computation of the natural frequencies of the couple fluid-structure system is presented for the case of the compressibility effect of air. Comparisons of the present method with various experimental data and other theories show the efficiency and accuracy of the method for any support condition of the plate. On the other hand, sometimes the geometry of the plate is not circular but almost-circular, so a perturbation method is developed to determine the influence of an incompressible fluid on the dynamic characteristics of almost-circular plates. The method is applied to plates of elliptical shape with low eccentricity. First, the natural frequencies and the mode shapes of the plate vibrating in vacuum are obtained. Next, the nondimensional added virtual mass coefficients (NAVMI factors) are calculated. Results of this factors and the effect of the fluid on the natural frequencies are presented.
Resumo:
The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on trace gas biogeochemistry, a large-scale mesocosm experiment was performed off Tvärminne Research Station, Finland in summer 2012. During the second half of the experiment, dimethylsulphide (DMS) concentrations in the highest fCO2 mesocosms (1075-1333 µatm) were 34 % lower than at ambient CO2 (350 µatm). However the net production (as measured by concentration change) of seven halocarbons analysed was not significantly affected by even the highest CO2 levels after 5 weeks exposure. Methyl iodide (CH3I) and diiodomethane (CH2I2) showed 15 % and 57 % increases in mean mesocosm concentration (3.8 ± 0.6 pmol L-1 increasing to 4.3 ± 0.4 pmol L-1 and 87.4 ± 14.9 pmol L-1 increasing to 134.4 ± 24.1 pmol L-1 respectively) during Phase II of the experiment, which were unrelated to CO2 and corresponded to 30 % lower Chl-? concentrations compared to Phase I. No other iodocarbons increased or showed a peak, with mean chloroiodomethane (CH2ClI) concentrations measured at 5.3 (± 0.9) pmol L-1 and iodoethane (C2H5I) at 0.5 (± 0.1) pmol L-1. Of the concentrations of bromoform (CHBr3; mean 88.1 ± 13.2 pmol L-1), dibromomethane (CH2Br2; mean 5.3 ± 0.8 pmol L-1) and dibromochloromethane (CHBr2Cl, mean 3.0 ± 0.5 pmol L-1), only CH2Br2 showed a decrease of 17 % between Phases I and II, with CHBr3 and CHBr2Cl showing similar mean concentrations in both Phases. Outside the mesocosms, an upwelling event was responsible for bringing colder, high CO2, low pH water to the surface starting on day t16 of the experiment; this variable CO2 system with frequent upwelling events implies the community of the Baltic Sea is acclimated to regular significant declines in pH caused by up to 800 µatm fCO2. After this upwelling, DMS concentrations declined, but halocarbon concentrations remained similar or increased compared to measurements prior to the change in conditions. Based on our findings, with future acidification of Baltic Sea waters, biogenic halocarbon emissions are likely to remain at similar values to today, however emissions of biogenic sulphur could significantly decrease from this region.
Resumo:
This thesis presents a novel high-performance approach to time-division-multiplexing (TDM) fibre Bragg grating (FBG) optical sensors, known as the resonant cavity architecture. A background theory of FBG optical sensing includes several techniques for multiplexing sensors. The limitations of current wavelength-division-multiplexing (WDM) schemes are contrasted against the technological and commercial advantage of TDM. The author’s hypothesis that ‘it should be possible to achieve TDM FBG sensor interrogation using an electrically switched semiconductor optical amplifier (SOA)’ is then explained. Research and development of a commercially viable optical sensor interrogator based on the resonant cavity architecture forms the remainder of this thesis. A fully programmable SOA drive system allows interrogation of sensor arrays 10km long with a spatial resolution of 8cm and a variable gain system provides dynamic compensation for fluctuating system losses. Ratiometric filter- and diffractive-element spectrometer-based wavelength measurement systems are developed and analysed for different commercial applications. The ratiometric design provides a low-cost solution that has picometre resolution and low noise using 4% reflective sensors, but is less tolerant to variation in system loss. The spectrometer design is more expensive, but delivers exceptional performance with picometre resolution, low noise and tolerance to 13dB system loss variation. Finally, this thesis details the interrogator’s peripheral components, its compliance for operation in harsh industrial environments and several examples of commercial applications where it has been deployed. Applications include laboratory instruments, temperature monitoring systems for oil production, dynamic control for wind-energy and battery powered, self-contained sub-sea strain monitoring.
Resumo:
Optimizing GIS capability does not always require that the municipality obtain cutting edge professionals and resources. This paper offers a disaster risk reduction (DRR) design methodology for small towns and rural areas that employs a multi-variable classification system, enabling customization for effective DRR. Determining appropriate GIS capacity requires that a community first be evaluated in order to identify its disaster risk reduction/disaster management (DRR/DM) requirements. These requirements are then considered in conjunction with the municipality's resources to establish the desired capability. Qualification levels for major aspects of GIS capability with respect to DRR/DM are provided along with descriptions of each level and suggested procedures for advancement to the next level. It should be noted that a municipality can be classified at a different level with respect to different variables. Needs vary according to the community, thus attainment of a uniform capability level may not be necessary.
Resumo:
Synchronous machines, widely used in energy generation systems, require constant voltage and frequency to obtain good quality of energy. However, for large load variati- ons, it is difficult to maintain outputs on nominal values due to parametric uncertainties, nonlinearities and coupling among variables. Then, we propose to apply the Dual Mode Adaptive Robust Controller (DMARC) in the field flux control loop, replacing the tradi- tional PI controller. The DMARC links a Model Reference Adaptive Controller (MRAC) and a Variable Structure Model Reference Adaptive Controller (VS-MRAC), incorpora- ting transient performance advantages from VS-MRAC and steady state properties from MRAC. Moreover, simulation results are included to corroborate the theoretical studies.
Resumo:
Las alternativas de vivienda en la ciudad de Cuenca evi¬dencian su preferencia hacia ciertos grupos sociales, es de¬cir no existen planes de vivienda dirigidos a los sectores marginales de la ciudad. Es necesario que se implementen alternativas coherentes en la parte de diseño así como en su construcción. Las viviendas se deben construir en menor tiempo, deben suplir las necesidades reales de las personas y los planes de financiamiento deben ir acorde a los ingre¬sos de los usuarios. El primer paso a tener en cuenta es, realizar un diagnóstico y localizar los sectores de la ciudad que presenten deficien¬cias en su diseño y construcción, el resultado a las dife¬rentes variables analizadas será para desarrollar un núcleo básico de vivienda con su respectivo sistema constructivo. El núcleo básico de vivienda debe ser flexible y progre¬sivo, para que pueda suplir las necesidades reales de las personas, además de esto para su análisis constructivo se utilizara alternativas de sistemas constructivos que puedan generar comparaciones reales en costo y tiempos de ejecución en obra.
Resumo:
When a structure vibrates immersed in a fluid it is known that the dynamic properties of the system are modified. The surrounding fluid will, in general, contribute to the inertia, the rigidity and the damping coefficient of the coupled fluid-structure system. For light structures, like spacecraft antennas, even when the fluid is air the contribution to the dynamic properties can be important. For not so light structures the ratio of the equivalent fluid/structure mass and rigidity can be very small and the fluid contribution could be neglected. For the ratio of equivalent fluid/structure damping both terms are of the same order and therefore the fluid contribution must be studied. The working life of the spacecraft structure would be on space and so without any surrounding fluid. The response of a spacecraft structure on its operational life would be attenuated by the structural damping alone but when the structure is dynamically tested on the earth the dynamic modal test is performed with the fluid surrounding it. The results thus are contaminated by the effects of the fluid. If the damping added by the fluid is of the same order as the structural damping the response of the structure in space can be quite different to the response predicted on earth. It is therefore desirable to have a method able to determine the amount of damping induced by the fluid and that should be subtracted of the total damping measured on the modal vibration test. In this work, a method for the determination of the effect of the surrounding fluid on the dynamic characteristics of a circular plate has been developed. The plate is assumed to vibrate harmonically with the vacuum modes and the generalized forces matrix due to the fluid is thus computed. For a compressible fluid this matrix is formed by complex numbers including terms of inertia, rigidity and damping. The matrix due to the fluid loading is determined by a boundary element method (BEM). The BEM used is of circular rings on the plate surface so the number of elements to obtain an accurate result is very low. The natural frequencies of the system are computed by an iteration procedure one by one and also the damping fluid contribution. Comparisons of the present method with various experimental data and other theories show the efficiency and accuracy of the method for any support condition of the plate.
Resumo:
This thesis describes a study conducted for the development of a new approach for the design of compliant mechanisms. Currently compliant mechanisms are based on a 2.5D design method. The applications for which compliant mechanisms can be used this way, is limited. The proposed research suggests to use a 3D approach for the design of CM’s, to better exploit its useful properties. To test the viability of this method, a practical application was chosen. The selected application is related to morphing wings. During this project a working prototype of a variable sweep and variable AoA system was designed and made for an SUAV. A compliant hinge allows the system to achieve two DOF. This hinge has been designed using the proposed 3D design approach. To validate the capabilities of the design, two methods were used. One of these methods was by simulation. By using analysis software, a basic idea could be provided of the stress and deformation of the designed mechanism. The second validation was done by means of AM. Using FDM and material jetting technologies, several prototypes were manufactured. The result of the first model showed that the DOF could be achieved. Models manufactured using material jetting technology, proved that the designed model could provide the desired motion and exploit the positive characteristics of CM. The system could be manufactured successfully in one part. Being able to produce the system in one part makes the need for an extensive assembly process redundant. This improves its structural quality. The materials chosen for the prototypes were PLA, VeroGray and Rigur. The material properties were suboptimal for its final purpose, but successful results were obtained. The prototypes proved tough and were able to provide the desired motion. This proves that the proposed design method can be a useful tool for the design of improved CM’s. Furthermore, the variable sweep & AoA system could be used to boost the flight performance of SUAV’s.