923 resultados para variable power, cycle-run, stochastic cycling


Relevância:

50.00% 50.00%

Publicador:

Resumo:

GPS is a commonly used and convenient technology for determining absolute position in outdoor environments, but its high power consumption leads to rapid battery depletion in mobile devices. An obvious solution is to duty cycle the GPS module, which prolongs the device lifetime at the cost of increased position uncertainty while the GPS is off. This article addresses the trade-off between energy consumption and localization performance in a mobile sensor network application. The focus is on augmenting GPS location with more energy-efficient location sensors to bound position estimate uncertainty while GPS is off. Empirical GPS and radio contact data from a large-scale animal tracking deployment is used to model node mobility, radio performance, and GPS. Because GPS takes a considerable, and variable, time after powering up before it delivers a good position measurement, we model the GPS behaviour through empirical measurements of two GPS modules. These models are then used to explore duty cycling strategies for maintaining position uncertainty within specified bounds. We then explore the benefits of using short-range radio contact logging alongside GPS as an energy-inexpensive means of lowering uncertainty while the GPS is off, and we propose strategies that use RSSI ranging and GPS back-offs to further reduce energy consumption. Results show that our combined strategies can cut node energy consumption by one third while still meeting application-specific positioning criteria.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper, we study duty cycling and power management in a network of energy harvesting sensor (EHS) nodes. We consider a one-hop network, where K EHS nodes send data to a destination over a wireless fading channel. The goal is to find the optimum duty cycling and power scheduling across the nodes that maximizes the average sum data rate, subject to energy neutrality at each node. We adopt a two-stage approach to simplify the problem. In the inner stage, we solve the problem of optimal duty cycling of the nodes, subject to the short-term power constraint set by the outer stage. The outer stage sets the short-term power constraints on the inner stage to maximize the long-term expected sum data rate, subject to long-term energy neutrality at each node. Albeit suboptimal, our solutions turn out to have a surprisingly simple form: the duty cycle allotted to each node by the inner stage is simply the fractional allotted power of that node relative to the total allotted power. The sum power allotted is a clipped version of the sum harvested power across all the nodes. The average sum throughput thus ultimately depends only on the sum harvested power and its statistics. We illustrate the performance improvement offered by the proposed solution compared to other naive schemes via Monte-Carlo simulations.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A previously developed Stochastic Reactor Model (SRM) is used to simulate combustion in a four cylinder in-line four-stroke naturally aspirated direct injection Spark Ignition (SI) engine modified to run in Homogeneous Charge Compression Ignition (HCCI) mode with a Negative Valve Overlap (NVO). A portion of the fuel is injected during NVO to increase the cylinder temperature and enable HCCI combustion at a compression ratio of 12:1. The model is coupled with GT-Power, a one-dimensional engine simulation tool used for the open valve portion of the engine cycle. The SRM is used to model in-cylinder mixing, heat transfer and chemistry during the NVO and main combustion. Direct injection is simulated during NVO in order to predict heat release and internal Exhaust Gas Recycle (EGR) composition and mass. The NOx emissions and simulated pressure profiles match experimental data well, including the cyclic fluctuations. The model predicts combustion characteristics at different fuel split ratios and injection timings. The effect of fuel reforming on ignition timing is investigated along with the causes of cycle to cycle variations and unstable operation. A detailed flux analysis during NVO unearths interesting results regarding the effect of NOx on ignition timing compared with its effect during the main combustion. © 2009 SAE International.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A sensitivity study has been conducted to assess the robustness of the conclusions presented in the MIT Fuel Cycle Study. The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycles. The options include limited recycling in LWRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. The analysis allowed optimization of the fast reactor conversion ratio with respect to desired fuel cycle performance characteristics. The following parameters were found to significantly affect the performance of recycling technologies and their penetration over time: Capacity Factors of the fuel cycle facilities, Spent Fuel Cooling Time, Thermal Reprocessing Introduction Date, and incore and Out-of-core TRU Inventory Requirements for recycling technology. An optimization scheme of the nuclear fuel cycle is proposed. Optimization criteria and metrics of interest for different stakeholders in the fuel cycle (economics, waste management, environmental impact, etc.) are utilized for two different optimization techniques (linear and stochastic). Preliminary results covering single and multi-variable and single and multi-objective optimization demonstrate the viability of the optimization scheme.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The transition of the mammalian cell from quiescence to proliferation is a highly variable process. Over the last four decades, two lines of apparently contradictory, phenomenological models have been proposed to account for such temporal variability. These include various forms of the transition probability (TP) model and the growth control (GC) model, which lack mechanistic details. The GC model was further proposed as an alternative explanation for the concept of the restriction point, which we recently demonstrated as being controlled by a bistable Rb-E2F switch. Here, through a combination of modeling and experiments, we show that these different lines of models in essence reflect different aspects of stochastic dynamics in cell cycle entry. In particular, we show that the variable activation of E2F can be described by stochastic activation of the bistable Rb-E2F switch, which in turn may account for the temporal variability in cell cycle entry. Moreover, we show that temporal dynamics of E2F activation can be recast into the frameworks of both the TP model and the GC model via parameter mapping. This mapping suggests that the two lines of phenomenological models can be reconciled through the stochastic dynamics of the Rb-E2F switch. It also suggests a potential utility of the TP or GC models in defining concise, quantitative phenotypes of cell physiology. This may have implications in classifying cell types or states.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Over the last decade there has been a rapid global increase in wind power stimulated by energy and climate policies. However, as wind power is inherently variable and stochastic over a range of time scales, additional system balancing is required to ensure system reliability and stability. This paper reviews the technical, policy and market challenges to achieving ambitious wind power penetration targets in Ireland’s All-Island Grid and examines a number of measures proposed to address these challenges. Current government policy in Ireland is to address these challenges with additional grid reinforcement, interconnection and open-cycle gas plant. More recently smart grid combined with demand side management and electric vehicles have also been presented as options to mitigate the variability of wind power. In addition, the transmission system operators have developed wind farm specific grid codes requiring improved turbine controls and wind power forecasting techniques.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Good urban design has the power to aid in the provision of inclusive journey environments, yet traditionally neglects the perspective of the cyclist. This paper starts from the premise that more can be done to understand and articulate cyclists’ experiences and perceptions of the urban environment in which they cycle, as part of a closer linking of urban design qualities with transport planning and infrastructure interventions. This approach is particularly applicable in relation to older cyclists, a group whose needs are often poorly understood and for whom perceptions can significantly influence mobile behaviours. Currently, knowledge regarding the relationship between the built environment and physical activity, including cycling, in older adults is limited. As European countries face up to the challenges associated with ageing populations, some metropolitan regions, such as Munich, Germany, are making inroads into widening cycling’s appeal across generations through a combination of urban design, policy and infrastructure initiatives. The paper provides a systematic understanding of the urban design qualities and built environment features that affect cycling participation and have the potential to contribute towards healthy ageing. Urban design features such as legibility, aesthetics, scale and open space have been shown to influence and affect other mobile behaviours (e.g. walking), but their role as a mediator in cycle behaviour remains under-explored. Many of these design ‘qualities’ are related to individual perceptions; capturing these can help build a picture of quality in the built environment that includes an individual’s relationship with their local neighbourhood and its influences on their mobility choices. Issues of accessibility, facilities, and safety in cycling remain crucial, and, when allied to these design ‘qualities‘, provides a more rounded reflection of everyday journeys and trips taken or desired. The paper sets out the role that urban design might play in mediating these critical mobility issues, and in particular, in better understanding the ‘quality of the journey’. It concludes by highlighting the need for designers, policy makers, planners and academics to consider the role that design can play in encouraging cycle participation, especially as part of a healthy ageing agenda.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper, a power management strategy (PMS) has been developed for the control of energy storage in a system subjected to loads of random duration. The PMS minimises the costs associated with the energy consumption of specific systems powered by a primary energy source and equipped with energy storage, under the assumption that the statistical distribution of load durations is known. By including the variability of the load in the cost function, it was possible to define the optimality criteria for the power flow of the storage. Numerical calculations have been performed obtaining the control strategies associated with the global minimum in energy costs, for a wide range of initial conditions of the system. The results of the calculations have been tested on a MATLAB/Simulink model of a rubber tyre gantry (RTG) crane equipped with a flywheel energy storage system (FESS) and subjected to a test cycle, which corresponds to the real operation of a crane in the Port of Felixstowe. The results of the model show increased energy savings and reduced peak power demand with respect to existing control strategies, indicating considerable potential savings for port operators in terms of energy and maintenance costs.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The objectives of this study were: a) to determine, in a cross-sectional manner, the effect of aerobic training on the peak oxygen uptake, the intensity at O2peak and the anaerobic threshold (AnT) during running and cycling; and b) to verify if the transference of the training effects are dependent on the analized type of exercise or physiological index. Eleven untrained males (UN), nine endurance cyclists (EC), seven endurance runners (ER), and nine triathletes (TR) were submitted, on separate days, to incremental tests until voluntary exhaustion on a mechanical braked cycle ergometer and on a treadmill. The values of O2peak (ml.kg-1.min-1) obtained in running and cycle ergometer (ER = 68.8 ± 6.3 and 62.0 ± 5.0; EC = 60.5 ± 8.0 and 67.6 ± 7.6; TR = 64.5 ± 4.8 and 61.0 ± 4.1; UN = 43.5 ± 7.0 and 36.7 ± 5.6; respectively) were higher in the group that presented specific training in the modality. The UN group presented the lower values of O2peak, regardless of the type of exercise. This same behavior was observed for the AnT (ml.kg-1.min-1) determined in running and cycle ergometer (ER = 56.8 ± 6.9 and 44.8 ± 5.7; EC = 51.2 ± 5.2 and 57.6 ± 7.1; TR = 56.5 ± 5.1 and 49.0 ± 4.8; UN = 33.2 ± 4.2 and 22.6 ± 3.7; respectively). It can be concluded that the transference of the training effects seems to be only partial, independently of the index (O2peak, IO2peak or AnT) or exercise type (running or cycling). In relation to the indices, the specificity of training seems to be less present in the O2peak than in the IO2peak and the AnT.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Zagatto, AM, Padulo, J, Muller, PTG, Miyagi, WE, Malta, ES, and Papoti, M. Hyperlactemia induction modes affect the lactate minimum power and physiological responses in cycling. J Strength Cond Res 28(10): 2927-2934, 2014The aim of this study was to verify the influence of hyperlactemia and blood acidosis induction on lactate minimum intensity (LMI). Twenty recreationally trained males who were experienced in cycling (15 cyclists and 5 triathletes) participated in this study. The athletes underwent 3 lactate minimum tests on an electromagnetic cycle ergometer. The hyperlactemia induction methods used were graded exercise test (GXT), Wingate test (WAnT), and 2 consecutive Wingate tests (2 x WAnTs). The LMI at 2 x WAnTs (200.3 +/- 25.8 W) was statistically higher than the LMI at GXT (187.3 +/- 31.9 W) and WAnT (189.8 +/- 26.0 W), with similar findings for blood lactate, oxygen uptake, and pulmonary ventilation at LMI. The venous pH after 2 x WAnTs was lower (7.04 +/- 0.24) than in (p <= 0.05) the GXT (7.19 +/- 0.05) and WAnT (7.19 +/- 0.05), whereas the blood lactate response was higher. In addition, similar findings were observed for bicarbonate concentration [HCO3] (2 x WAnTs lower than WAnT; 15.3 +/- 2.6 mmol center dot L-1 and 18.2 +/- 2.7 mmol center dot L(-)1, respectively) (p <= 0.05). However, the maximal aerobic power and total time measured during the incremental phase also did not differ. Therefore, we can conclude that the induction mode significantly affects pH, blood lactate, and [HCO3] and consequently they alter the LMI and physiological parameters at LMI.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To examine the influence of two different fast-start pacing strategies on performance and oxygen consumption (V˙O2) during cycle ergometer time trials lasting ∼5 min. Methods: Eight trained male cyclists performed four cycle ergometer time trials whereby the total work completed (113 ± 11.5 kJ; mean ± SD) was identical to the better of two 5-min self-paced familiarization trials. During the performance trials, initial power output was manipulated to induce either an all-out or a fast start. Power output during the first 60 s of the fast-start trial was maintained at 471.0 ± 48.0 W, whereas the all-out start approximated a maximal starting effort for the first 15 s (mean power: 753.6 ± 76.5 W) followed by 45 s at a constant power output (376.8 ± 38.5 W). Irrespective of starting strategy, power output was controlled so that participants would complete the first quarter of the trial (28.3 ± 2.9 kJ) in 60 s. Participants performed two trials using each condition, with their fastest time trial compared. Results: Performance time was significantly faster when cyclists adopted the all-out start (4 min 48 s ± 8 s) compared with the fast start (4 min 51 s ± 8 s; P < 0.05). The first-quarter V˙O2 during the all-out start trial (3.4 ± 0.4 L·min-1) was significantly higher than during the fast-start trial (3.1 ± 0.4 L·min-1; P < 0.05). After removal of an outlier, the percentage increase in first-quarter V˙O2 was significantly correlated (r = -0.86, P < 0.05) with the relative difference in finishing time. Conclusions: An all-out start produces superior middle distance cycling performance when compared with a fast start. The improvement in performance may be due to a faster V˙O2 response rather than time saved due to a rapid acceleration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The application of variable structure control (VSC) for power systems stabilization is studied in this paper. It is the application, aspects and constraints of VSC which are of particular interest. A variable structure control methodology has been proposed for power systems stabilization. The method is implemented using thyristor controlled series compensators. A three machine power system is stabilized using a switching line control for large disturbances which becomes a sliding control as the disturbance becomes smaller. The results demonstrate the effectiveness of the methodology proposed as an useful tool to suppress the oscillations in power systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Demands for delivering high instantaneous power in a compressed form (pulse shape) have widely increased during recent decades. The flexible shapes with variable pulse specifications offered by pulsed power have made it a practical and effective supply method for an extensive range of applications. In particular, the release of basic subatomic particles (i.e. electron, proton and neutron) in an atom (ionization process) and the synthesizing of molecules to form ions or other molecules are among those reactions that necessitate large amount of instantaneous power. In addition to the decomposition process, there have recently been requests for pulsed power in other areas such as in the combination of molecules (i.e. fusion, material joining), gessoes radiations (i.e. electron beams, laser, and radar), explosions (i.e. concrete recycling), wastewater, exhausted gas, and material surface treatments. These pulses are widely employed in the silent discharge process in all types of materials (including gas, fluid and solid); in some cases, to form the plasma and consequently accelerate the associated process. Due to this fast growing demand for pulsed power in industrial and environmental applications, the exigency of having more efficient and flexible pulse modulators is now receiving greater consideration. Sensitive applications, such as plasma fusion and laser guns also require more precisely produced repetitive pulses with a higher quality. Many research studies are being conducted in different areas that need a flexible pulse modulator to vary pulse features to investigate the influence of these variations on the application. In addition, there is the need to prevent the waste of a considerable amount of energy caused by the arc phenomena that frequently occur after the plasma process. The control over power flow during the supply process is a critical skill that enables the pulse supply to halt the supply process at any stage. Different pulse modulators which utilise different accumulation techniques including Marx Generators (MG), Magnetic Pulse Compressors (MPC), Pulse Forming Networks (PFN) and Multistage Blumlein Lines (MBL) are currently employed to supply a wide range of applications. Gas/Magnetic switching technologies (such as spark gap and hydrogen thyratron) have conventionally been used as switching devices in pulse modulator structures because of their high voltage ratings and considerably low rising times. However, they also suffer from serious drawbacks such as, their low efficiency, reliability and repetition rate, and also their short life span. Being bulky, heavy and expensive are the other disadvantages associated with these devices. Recently developed solid-state switching technology is an appropriate substitution for these switching devices due to the benefits they bring to the pulse supplies. Besides being compact, efficient, reasonable and reliable, and having a long life span, their high frequency switching skill allows repetitive operation of pulsed power supply. The main concerns in using solid-state transistors are the voltage rating and the rising time of available switches that, in some cases, cannot satisfy the application’s requirements. However, there are several power electronics configurations and techniques that make solid-state utilisation feasible for high voltage pulse generation. Therefore, the design and development of novel methods and topologies with higher efficiency and flexibility for pulsed power generators have been considered as the main scope of this research work. This aim is pursued through several innovative proposals that can be classified under the following two principal objectives. • To innovate and develop novel solid-state based topologies for pulsed power generation • To improve available technologies that have the potential to accommodate solid-state technology by revising, reconfiguring and adjusting their structure and control algorithms. The quest to distinguish novel topologies for a proper pulsed power production was begun with a deep and through review of conventional pulse generators and useful power electronics topologies. As a result of this study, it appears that efficiency and flexibility are the most significant demands of plasma applications that have not been met by state-of-the-art methods. Many solid-state based configurations were considered and simulated in order to evaluate their potential to be utilised in the pulsed power area. Parts of this literature review are documented in Chapter 1 of this thesis. Current source topologies demonstrate valuable advantages in supplying the loads with capacitive characteristics such as plasma applications. To investigate the influence of switching transients associated with solid-state devices on rise time of pulses, simulation based studies have been undertaken. A variable current source is considered to pump different current levels to a capacitive load, and it was evident that dissimilar dv/dts are produced at the output. Thereby, transient effects on pulse rising time are denied regarding the evidence acquired from this examination. A detailed report of this study is given in Chapter 6 of this thesis. This study inspired the design of a solid-state based topology that take advantage of both current and voltage sources. A series of switch-resistor-capacitor units at the output splits the produced voltage to lower levels, so it can be shared by the switches. A smart but complicated switching strategy is also designed to discharge the residual energy after each supply cycle. To prevent reverse power flow and to reduce the complexity of the control algorithm in this system, the resistors in common paths of units are substituted with diode rectifiers (switch-diode-capacitor). This modification not only gives the feasibility of stopping the load supply process to the supplier at any stage (and consequently saving energy), but also enables the converter to operate in a two-stroke mode with asymmetrical capacitors. The components’ determination and exchanging energy calculations are accomplished with respect to application specifications and demands. Both topologies were simply modelled and simulation studies have been carried out with the simplified models. Experimental assessments were also executed on implemented hardware and the approaches verified the initial analysis. Reports on details of both converters are thoroughly discussed in Chapters 2 and 3 of the thesis. Conventional MGs have been recently modified to use solid-state transistors (i.e. Insulated gate bipolar transistors) instead of magnetic/gas switching devices. Resistive insulators previously used in their structures are substituted by diode rectifiers to adjust MGs for a proper voltage sharing. However, despite utilizing solid-state technology in MGs configurations, further design and control amendments can still be made to achieve an improved performance with fewer components. Considering a number of charging techniques, resonant phenomenon is adopted in a proposal to charge the capacitors. In addition to charging the capacitors at twice the input voltage, triggering switches at the moment at which the conducted current through switches is zero significantly reduces the switching losses. Another configuration is also introduced in this research for Marx topology based on commutation circuits that use a current source to charge the capacitors. According to this design, diode-capacitor units, each including two Marx stages, are connected in cascade through solid-state devices and aggregate the voltages across the capacitors to produce a high voltage pulse. The polarity of voltage across one capacitor in each unit is reversed in an intermediate mode by connecting the commutation circuit to the capacitor. The insulation of input side from load side is provided in this topology by disconnecting the load from the current source during the supply process. Furthermore, the number of required fast switching devices in both designs is reduced to half of the number used in a conventional MG; they are replaced with slower switches (such as Thyristors) that need simpler driving modules. In addition, the contributing switches in discharging paths are decreased to half; this decrease leads to a reduction in conduction losses. Associated models are simulated, and hardware tests are performed to verify the validity of proposed topologies. Chapters 4, 5 and 7 of the thesis present all relevant analysis and approaches according to these topologies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose Commencing selected workouts with low muscle glycogen availability augments several markers of training adaptation compared with undertaking the same sessions with normal glycogen content. However, low glycogen availability reduces the capacity to perform high-intensity (>85% of peak aerobic power (V·O2peak)) endurance exercise. We determined whether a low dose of caffeine could partially rescue the reduction in maximal self-selected power output observed when individuals commenced high-intensity interval training with low (LOW) compared with normal (NORM) glycogen availability. Methods Twelve endurance-trained cyclists/triathletes performed four experimental trials using a double-blind Latin square design. Muscle glycogen content was manipulated via exercise–diet interventions so that two experimental trials were commenced with LOW and two with NORM muscle glycogen availability. Sixty minutes before an experimental trial, subjects ingested a capsule containing anhydrous caffeine (CAFF, 3 mg-1·kg-1 body mass) or placebo (PLBO). Instantaneous power output was measured throughout high-intensity interval training (8 × 5-min bouts at maximum self-selected intensity with 1-min recovery). Results There were significant main effects for both preexercise glycogen content and caffeine ingestion on power output. LOW reduced power output by approximately 8% compared with NORM (P < 0.01), whereas caffeine increased power output by 2.8% and 3.5% for NORM and LOW, respectively, (P < 0.01). Conclusion We conclude that caffeine enhanced power output independently of muscle glycogen concentration but could not fully restore power output to levels commensurate with that when subjects commenced exercise with normal glycogen availability. However, the reported increase in power output does provide a likely performance benefit and may provide a means to further enhance the already augmented training response observed when selected sessions are commenced with reduced muscle glycogen availability. It has long been known that endurance training induces a multitude of metabolic and morphological adaptations that improve the resistance of the trained musculature to fatigue and enhance endurance capacity and/or exercise performance (13). Accumulating evidence now suggests that many of these adaptations can be modified by nutrient availability (9–11,21). Growing evidence suggests that training with reduced muscle glycogen using a “train twice every second day” compared with a more traditional “train once daily” approach can enhance the acute training response (29) and markers representative of endurance training adaptation after short-term (3–10 wk) training interventions (8,16,30). Of note is that the superior training adaptation in these previous studies was attained despite a reduction in maximal self-selected power output (16,30). The most obvious factor underlying the reduced intensity during a second training bout is the reduction in muscle glycogen availability. However, there is also the possibility that other metabolic and/or neural factors may be responsible for the power drop-off observed when two exercise bouts are performed in close proximity. Regardless of the precise mechanism(s), there remains the intriguing possibility that the magnitude of training adaptation previously reported in the face of a reduced training intensity (Hulston et al. (16) and Yeo et al.) might be further augmented, and/or other aspects of the training stimulus better preserved, if power output was not compromised. Caffeine ingestion is a possible strategy that might “rescue” the aforementioned reduction in power output that occurs when individuals commence high-intensity interval training (HIT) with low compared with normal glycogen availability. Recent evidence suggests that, at least in endurance-based events, the maximal benefits of caffeine are seen at small to moderate (2–3 mg·kg-1 body mass (BM)) doses (for reviews, see Refs. (3,24)). Accordingly, in this study, we aimed to determine the effect of a low dose of caffeine (3 mg·kg-1 BM) on maximal self-selected power output during HIT commenced with either normal (NORM) or low (LOW) muscle glycogen availability. We hypothesized that even under conditions of low glycogen availability, caffeine would increase maximal self-selected power output and thereby partially rescue the reduction in training intensity observed when individuals commence HIT with low glycogen availability.