926 resultados para type III secretion
Resumo:
Burkholderia cenocepacia is an opportunistic pathogen that survives intracellularly in macrophages and causes serious respiratory infections in patients with cystic fibrosis. We have previously shown that bacterial survival occurs in bacteria-containing membrane vacuoles (BcCVs) resembling arrested autophagosomes. Intracellular bacteria stimulate IL-1ß secretion in a caspase-1-dependent manner and induce dramatic changes to the actin cytoskeleton and the assembly of the NADPH oxidase complex onto the BcCV membrane. A Type 6 secretion system (T6SS) is required for these phenotypes but surprisingly it is not required for the maturation arrest of the BcCV. Here, we show that macrophages infected with B. cenocepacia employ the NLRP3 inflammasome to induce IL-1ß secretion and pyroptosis. Moreover, IL-1ß secretion by B. cenocepacia-infected macrophages is suppressed in deletion mutants unable to produce functional Type VI, Type IV, and Type 2 secretion systems (SS). We provide evidence that the T6SS mediates the disruption of the BcCV membrane, which allows the escape of proteins secreted by the T2SS into the macrophage cytoplasm. This was demonstrated by the activity of fusion derivatives of the T2SS-secreted metalloproteases ZmpA and ZmpB with adenylcyclase. Supporting this notion, ZmpA and ZmpB are required for efficient IL-1ß secretion in a T6SS dependent manner. ZmpA and ZmpB are also required for the maturation arrest of the BcCVs and bacterial intra-macrophage survival in a T6SS-independent fashion. Our results uncover a novel mechanism for inflammasome activation that involves cooperation between two bacterial secretory pathways, and an unanticipated role for T2SS-secreted proteins in intracellular bacterial survival.
Resumo:
Burkholderia cenocepacia is an important opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis (CF). Adaptation of B. cenocepacia to the CF airways may play an important role in the persistence of the infection. We have identified a sensor kinase-response regulator (BCAM0379) named AtsR in B. cenocepacia K56-2 that shares 19% amino acid identity with RetS from Pseudomonas aeruginosa. atsR inactivation led to increased biofilm production and a hyperadherent phenotype in both abiotic surfaces and lung epithelial cells. Also, the atsR mutant overexpressed and hypersecreted an Hcp-like protein known to be specifically secreted by the type VI secretion system (T6SS) in other gram-negative bacteria. Amoeba plaque assays demonstrated that the atsR mutant was more resistant to Dictyostelium predation than the wild-type strain and that this phenomenon was T6SS dependent. Macrophage infection assays also demonstrated that the atsR mutant induces the formation of actin-mediated protrusions from macrophages that require a functional Hcp-like protein, suggesting that the T6SS is involved in actin rearrangements. Three B. cenocepacia transposon mutants that were found in a previous study to be impaired for survival in chronic lung infection model were mapped to the T6SS gene cluster, indicating that the T6SS is required for infection in vivo. Together, our data show that AtsR is involved in the regulation of genes required for virulence in B. cenocepacia K56-2, including genes encoding a T6SS.
Resumo:
Deficiency of UDP-galactose 4'-epimerase is implicated in type III galactosemia. Two variants, p.K161N-hGALE and p.D175N-hGALE, have been previously found in combination with other alleles in patients with a mild form of the disease. Both variants were studied in vivo and in vitro and showed different levels of impairment. p.K161N-hGALE was severely impaired with substantially reduced enzymatic activity, increased thermal stability, reduced cofactor binding and no ability to rescue the galactose-sensitivity of gal10-null yeast. Interestingly p.K161N-hGALE showed less impairment of activity with UDP-N-acetylgalactosamine in comparison to UDP-galactose. Differential scanning fluorimetry revealed that p.K161N-hGALE was more stable than the wild-type protein and only changed stability in the presence of UDP-N-acetylglucosamine and NAD(+). p.D175N-hGALE essentially rescued the galactose-sensitivity of gal10-null yeast, was less stable than the wild-type protein but showed increased stability in the presence of substrates and cofactor. We postulate that p.K161N-hGALE causes its effects by abolishing an important interaction between the protein and the cofactor, whereas p.D175N-hGALE is predicted to remove a stabilizing salt bridge between the ends of two a-helices that contain residues that interact with NAD(+). These results suggest that the cofactor binding is dynamic and that its loss results in significant structural changes that may be important in disease causation.
Resumo:
The enzyme UDP-galactose 4'-epimerase (GALE) catalyses the reversible epimerisation of both UDP-galactose and UDP-N-acetyl-galactosamine. Deficiency of the human enzyme (hGALE) is associated with type III galactosemia. The majority of known mutations in hGALE are missense and private thus making clinical guidance difficult. In this study a bioinformatics approach was employed to analyse the structural effects due to each mutation using both the UDP-glucose and UDP-N-acetylglucosamine bound structures of the wild-type protein. Changes to the enzyme's overall stability, substrate/cofactor binding and propensity to aggregate were also predicted. These predictions were found to be in good agreement with previous in vitro and in vivo studies when data was available and allowed for the differentiation of those mutants that severely impair the enzyme's activity against UDP-galactose. Next this combination of techniques were applied to another twenty-six reported variants from the NCBI dbSNP database that have yet to be studied to predict their effects. This identified p.I14T, p.R184H and p.G302R as likely severely impairing mutations. Although severely impaired mutants were predicted to decrease the protein's stability, overall predicted stability changes only weakly correlated with residual activity against UDP-galactose. This suggests other protein functions such as changes in cofactor and substrate binding may also contribute to the mechanism of impairment. Finally this investigation shows that this combination of different in silico approaches is useful in predicting the effects of mutations and that it could be the basis of an initial prediction of likely clinical severity when new hGALE mutants are discovered.
Resumo:
Type III galactosemia is an inherited disease caused by mutations which affect the activity of UDP-galactose 4'-epimerase (GALE). We evaluated the impact of four disease-associated variants (p.N34S, p.G90E, p.V94M and p.K161N) on the conformational stability and dynamics of GALE. Thermal denaturation studies showed that wild-type GALE denatures at temperatures close to physiological, and disease-associated mutations often reduce GALE's thermal stability. This denaturation is under kinetic control and results partly from dimer dissociation. The natural ligands, NAD(+) and UDP-glucose, stabilize GALE. Proteolysis studies showed that the natural ligands and disease-associated variations affect local dynamics in the N-terminal region of GALE. Proteolysis kinetics followed a two-step irreversible model in which the intact protein is cleaved at Ala38 forming a long-lived intermediate in the first step. NAD(+) reduces the rate of the first step, increasing the amount of undigested protein whereas UDP-glucose reduces the rate of the second step, increasing accumulation of the intermediate. Disease-associated variants affect these rates and the amounts of protein in each state. Our results also suggest communication between domains in GALE. We hypothesize that, in vivo, concentrations of natural ligands modulate GALE stability and that it should be possible to discover compounds which mimic the stabilising effects of the natural ligands overcoming mutation-induced destabilization.
Resumo:
The Gram-negative bacterial type VI Secretion System (T6SS) delivers toxins to kill orinhibit the growth of susceptible bacteria, while others target eukaryotic cells. Deletionof atsR, a negative regulator of virulence factors in B. cenocepacia K56-2, increasesT6SS activity. Macrophages infected with a K56-2 ΔatsR mutant display dramaticalterations in their actin cytoskeleton architecture that rely on the T6SS, which isresponsible for the inactivation of multiple Rho-family GTPases by an unknownmechanism. We employed a strategy to standardize the bacterial infection ofmacrophages and densitometrically quantify the T6SS-associated cellular phenotype,which allowed us to characterize the phenotype of systematic deletions of each genewithin the T6SS cluster and ten vgrG encoding genes in K56-2 ΔatsR. None of thegenes from the T6SS core cluster and the individual vgrGs were directly responsiblefor the cytoskeletal changes in infected cells. However, a mutant strain with all vgrGgenes deleted was unable to cause macrophage alterations. Despite not being able toidentify a specific effector protein responsible for the cytoskeletal defects inmacrophages, our strategy resulted in the identification of the critical core componentsand accessory proteins of the T6SS assembly machinery and provides a screeningmethod to detect T6SS effectors targeting the actin cytoskeleton in macrophages byrandom mutagenesis.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Les systèmes bactériens de sécrétion de type IV (T4SS) sont constitués d’un ensemble de 8 à 12 protéines conservées. Ces dernières sont utilisées lors de la translocation de protéines, la translocation de complexes ADN-protéines mais aussi pour le transport de ces derniers au travers de la membrane cellulaire. Les T4SS, en tant que facteurs de virulence pour beaucoup de pathogènes comme Brucella suis, sont donc d’excellents modèles cibles pour le développement de médicaments d’antivirulence. Ces médicaments, en privant le pathogène de son facteur essentiel de virulence : le T4SS, constituent une alternative ou encore une amélioration des traitements antibiotiques utilisés actuellement. VirB8, un facteur d’assemblage conservé dans le T4SS, forme des dimères qui sont importants pour la fonction des T4SS dans ces pathogènes. De par ses interactions multiples, VirB8 est un excellent modèle pour l’analyse des facteurs d’assemblage mais aussi en tant que cible de médicaments qui empêcheraient son interaction avec d’autres protéines et qui, in fine, désarmeraient les bactéries en les privant de leur fonctions essentielles de virulence. À ce jour, nous savons qu’il existe un équilibre monomère-dimère et un processus d’homodimerization de VirB8 dont l’importance est vitale pour la fonctionnement biologique des T4SSs. En se basant sur des essais quantitatifs d’interaction, nous avons identifié (i) des sites potentiels d’interaction avec d’autres protéines VirB du T4SS mais aussi (ii) isolé des petites molécules inhibitrices afin de tester la fonction protéique de VirB8. Afin de déterminer les acides aminés importants pour l’hétérodimérization de VirB8 avec VirB10, nous avons effectué des expériences de mutagenèse aléatoire, de phage display et d’arrimage moléculaire in silico. Ces expériences ont démontré l’importance de trois acides aminés localisés sur le feuillet β : R160, S162, T164 et I165. Ces derniers seraient importants pour l’association de VirB8 avec VirB10 étant donné que leur mutagenèse entraine une diminution de la formation du complexe VirB8-VirB10. L’objectif actuel de notre projet de recherche est de pouvoir mieux comprendre mais aussi d’évaluer le rôle de VirB8 dans l’assemblage du T4SS. Grace à un méthode de criblage adaptée à partir de la structure de VirB8, nous avons pu identifié une petite molécule inhibitrice BAR-068, qui aurait un rôle prometteur dans l’inhibition du T4SS. Nous avons utilisé la spectroscopie par fluorescence, l’essai à deux hybrides, le cross-linking et la cristallographie afin de déterminer le mécanisme d'interaction existant entre VirB8 et BAR-068. Ces travaux pourraient permettre de nombreuses avancées, notamment en termes de compréhension des mécanismes d’inhibition du T4SS. Notre objectif ultime est de pouvoir caractériser la séquence d’évènements essentiels à l’assemblage et au fonctionnement du T4SS. De manière globale, notre projet de recherche permettrait de révéler les grands principes d’assemblage des protéines membranaires, les processus de sécrétion de protéines chez les bactéries mais aussi de proposer une nouvelle stratégie lors du développement de drogues antimicrobiennes.
Resumo:
This study probed the possible effects of type III resistant starch (RS) crystalline polymorphism on RS fermentability by human gut microbiota and the short chain fatty acids production in vitro. Human fecal pH-controlled batch cultures showed RS induces an ecological shift in the colonic microbiota with polymorph B inducing Bifidobacterium spp. and polymorph A inducing Atopobium spp. Interestingly, polymorph B also induced higher butyrate production to levels of 0.79 mM. In addition, human gut simulation demonstrated that polymorph B promotes the growth of bifidobacteria in the proximal part of the colon and double their relative proportion in the microbiota in the distal colon. These findings suggest that RS polymorph B may promote large bowel health. While the findings are limited by study constraints, they do raise the possibility of using different thermal processing to delineate differences in the prebiotic capabilities of RS, especially its butryrogenicity in the human colon.
Resumo:
A novel radix-3/9 algorithm for type-III generalized discrete Hartley transform (GDHT) is proposed, which applies to length-3(P) sequences. This algorithm is especially efficient in the case that multiplication is much more time-consuming than addition. A comparison analysis shows that the proposed algorithm outperforms a known algorithm when one multiplication is more time-consuming than five additions. When combined with any known radix-2 type-III GDHT algorithm, the new algorithm also applies to length-2(q)3(P) sequences.
Resumo:
Enterohemorrhagic Escherichia coli (EHEC) strains comprise a broad group of bacteria, some of which cause attaching and effacing (AE) lesions and enteritis in humans and animals. Non-O157:H7 EHEC strains contain the gene efa-1 (referred to in previous publications as efa1), which influences adherence to cultured epithelial cells. An almost identical gene in enteropathogenic E. coli (lifA) mediates the inhibition of lymphocyte proliferation and proinflammatory cytokine synthesis. We have shown previously that significantly lower numbers of EHEC 05 and 0111 efa-1 mutants are shed in feces following experimental infection in calves and that these mutants exhibit reduced adherence to intestinal epithelia compared with isogenic wild-type strains. E. coli O157:H7 strains lack efa-1 but encode a homolog on the pO157 plasmid (toxB/l7095) and contain a truncated version of the efa-1 gene (efa-1'/z4332 in O island 122 of the EDL933 chromosome). Here we report that E. coli O157:H7 toxB and efa-1' single and double mutants exhibit reduced adherence to cultured epithelial cells and show reduced expression and secretion of proteins encoded by the locus of enterocyte effacement (LEE), which plays a key role in the host-cell interactions of EHEC. The activity of LEE1, LEE4, and LEE5 promoters was not significantly altered in E. coli O157:H7 strains harboring toxB or efa-1' mutations, indicating that the effect on the expression of LEE-encoded secreted proteins occurs at a posttranscriptional level. Despite affecting type III secretion, mutation of toxB and efa-1' did not significantly affect the course of fecal shedding of E. coli O157:H7 following experimental inoculation of 10- to 14-day-old calves or 6-week-old sheep. Mutation of tir caused a significant reduction in fecal shedding of E. coli O157:H7 in calves, indicating that the formation of AE lesions is important for colonization of the bovine intestine.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aim the purpose of this article is to report the 10-year follow-up of a right mandibular central incisor with 'dens invaginatus' that was root filled.Summary 'Dens invaginatus ' is a rare malformation of teeth, probably resulting from an infolding of the dental papilla during tooth development. It has alternatively been called 'dens in dente' and 'dilated composite odontome'. Radiographic examination may clearly demonstrate this feature, although no signs may be recognized clinically. If no entrance to the invagination can be detected and there are no signs of pulp pathosis, then no treatment is required other than fissure sealing of the invagination. In deep invaginations, it is likely that root-canal treatment may be required. Occasionally, when the tooth has an immature root, apexification is necessary. Root-canal treatment of a right mandibular central incisor with 'dens invaginatus ' is described along with 10-year follow-up.Key learning pointsBoth clinical and radiographic examinations are necessary to determine morphological features of teeth before root-canal treatment.Sensibility testing to determine the pulp condition is critical prior to treatment.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We investigated the prevalence of virulent Rhodococcus equi in clinical isolates from 41 foals (19 sporadic and seven endemic cases) in Brazil between 1991 and 2003. of the 41 virulent isolates, six contained an 85-kb type I plasmid, 33 contained an 87-kb type I plasmid, both of which have been found in isolates from the Americas, and the remaining two contained a new variant, which did not display the EcoRI, EcoT221 and BamHI digestion patterns of the 11 representative plasmids already reported (85-kb types I-IV; 87-kb types I and II; 90-kb types I-V). We tentatively designated the new variant as the '87-kb type III' plasmid, because its BamHI digestion pattern is similar to that of the 87-kb type I plasmid. This is the first report of the molecular epidemiology surveillance of virulent R. equi in clinical isolates from Brazilian foals. (C) 2004 Elsevier Ltd. All rights reserved.