939 resultados para turbulent channel flow


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model for off-wall boundary conditions for turbulent flow is investigated. The objective of such a model is to circumvent the need to resolve the buffer layer near the wall, by providing conditions in the logarithmic layer for the overlying flow. The model is based on the self-similarity of the flow at different heights in the logarithmic layer. It was first proposed by Mizuno and Jiménez (2013), imposing at the boundary plane a velocity field obtained on-the-fly from an overlying region. The key feature of the model was that the lengthscales of the field were rescaled to account for the self-similarity law. The model was successful at sustaining a turbulent logarithmic layer, but resulted in some disagreements in the flow statistics, compared to fully-resolved flows. These disagreements needed to be addressed for the model to be of practical application. In the present paper, a more refined, wavelength-dependent rescaling law is proposed, based on the wavelength-dependent dynamics in fully-resolved flows. Results for channel flow show that the new model eliminates the large artificial pressure fluctuations found in the previous one, and a better agreement is obtained in the bulk properties, the flow fluctuations, and their spectral distribution across the whole domain. © Published under licence by IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The liquid metal flow in induction crucible models is known to be unstable, turbulent and difficult to predict in the regime of medium frequencies when the electromagnetic skin-layer is of considerable extent. We present long term turbulent flow measurements by a permanent magnet incorporated potential difference velocity probe in a cylindrical container filled with eutectic melt In-Ga-Sn. The parallel numerical simulation of the long time scale development of the turbulent average flow is presented. The numerical flow model uses an implicit pseudo-spectral code and k-w turbulence model, which was recently developed for the transitional flow modelling. The results compare reasonably to the experiment and demonstrate the time development of the turbulent flow field and the turbulence energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Turbulent energy dissipation is presented in the theoretical context of the famous Kolmogorov theory, formulated in 1941. Some remarks and comments about this theory help the reader understand the approach to turbulence study, as well as give some basic insights to the problem. A clear distinction is made amongst dissipation, pseudo-dissipation and dissipation surrogates. Dissipation regulates how turbulent kinetic energy in a flow gets transformed into internal energy, which makes this quantity a fundamental characteristic to investigate in order to enhance our understanding of turbulence. The dissertation focuses on experimental investigation of the pseudo-dissipation. Indeed this quantity is difficult to measure as it requires the knowledge of all the possible derivatives of the three dimensional velocity field. Once considering an hot-wire technique to measure dissipation we need to deal with surrogates of dissipation, since not all the terms can be measured. The analysis of surrogates is the main topic of this work. In particular two flows, the turbulent channel and the turbulent jet, are considered. These canonic flows, introduced in a brief fashion, are often used as a benchmark for CFD solvers and experimental equipment due to their simple structure. Observations made in the canonic flows are often transferable to more complicated and interesting cases, with many industrial applications. The main tools of investigation are DNS simulations and experimental measures. DNS data are used as a benchmark for the experimental results since all the components of dissipation are known within the numerical simulation. The results of some DNS were already available at the start of this thesis, so the main work consisted in reading and processing the data. Experiments were carried out by means of hot-wire anemometry, described in detail on a theoretical and practical level. The study of DNS data of a turbulent channel at Re=298 reveals that the traditional surrogate can be improved Consequently two new surrogates are proposed and analysed, based on terms of the velocity gradient that are easy to measure experimentally. We manage to find a formulation that improves the accuracy of surrogates by an order of magnitude. For the jet flow results from a DNS at Re=1600 of a temporal jet, and results from our experimental facility CAT at Re=70000, are compared to validate the experiment. It is found that the ratio between components of the dissipation differs between DNS and experimental data. Possible errors in both sets of data are discussed, and some ways to improve the data are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The determination of the local Lagrangian evolution of the flow topology in wall-bounded turbulence, and of the Lagrangian evolution associated with entrainment across the turbulent / non-turbulent interface into a turbulent boundary layer, require accurate tracking of a fluid particle and its local velocity gradients. This paper addresses the implementation of fluid-particle tracking in both a turbulent boundary layer direct numerical simulation and in a fully developed channel flow simulation. Determination of the sub-grid particle velocity is performed using both cubic B-spline, four-point Hermite spline and higher-order Hermite spline interpolation. Both wall-bounded flows show similar oscillations in the Lagrangian tracers of both velocity and velocity gradients, corresponding to the movement of particles across the boundaries of computational cells. While these oscillation in the particle velocity are relatively small and have negligible effect on the particle trajectories for time-steps of the order of CFL = 0.1, they appear to be the cause of significant oscillations in the evolution of the invariants of the velocity gradient tensor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An experimental investigation has been made of a round, non-buoyant plume of nitric oxide, NO, in a turbulent grid flow of ozone, 03, using the Turbulent Smog Chamber at the University of Sydney. The measurements have been made at a resolution not previously reported in the literature. The reaction is conducted at non-equilibrium so there is significant interaction between turbulent mixing and chemical reaction. The plume has been characterized by a set of constant initial reactant concentration measurements consisting of radial profiles at various axial locations. Whole plume behaviour can thus be characterized and parameters are selected for a second set of fixed physical location measurements where the effects of varying the initial reactant concentrations are investigated. Careful experiment design and specially developed chemilurninescent analysers, which measure fluctuating concentrations of reactive scalars, ensure that spatial and temporal resolutions are adequate to measure the quantities of interest. Conserved scalar theory is used to define a conserved scalar from the measured reactive scalars and to define frozen, equilibrium and reaction dominated cases for the reactive scalars. Reactive scalar means and the mean reaction rate are bounded by frozen and equilibrium limits but this is not always the case for the reactant variances and covariances. The plume reactant statistics are closer to the equilibrium limit than those for the ambient reactant. The covariance term in the mean reaction rate is found to be negative and significant for all measurements made. The Toor closure was found to overestimate the mean reaction rate by 15 to 65%. Gradient model turbulent diffusivities had significant scatter and were not observed to be affected by reaction. The ratio of turbulent diffusivities for the conserved scalar mean and that for the r.m.s. was found to be approximately 1. Estimates of the ratio of the dissipation timescales of around 2 were found downstream. Estimates of the correlation coefficient between the conserved scalar and its dissipation (parallel to the mean flow) were found to be between 0.25 and the significant value of 0.5. Scalar dissipations for non-reactive and reactive scalars were found to be significantly different. Conditional statistics are found to be a useful way of investigating the reactive behaviour of the plume, effectively decoupling the interaction of chemical reaction and turbulent mixing. It is found that conditional reactive scalar means lack significant transverse dependence as has previously been found theoretically by Klimenko (1995). It is also found that conditional variance around the conditional reactive scalar means is relatively small, simplifying the closure for the conditional reaction rate. These properties are important for the Conditional Moment Closure (CMC) model for turbulent reacting flows recently proposed by Klimenko (1990) and Bilger (1993). Preliminary CMC model calculations are carried out for this flow using a simple model for the conditional scalar dissipation. Model predictions and measured conditional reactive scalar means compare favorably. The reaction dominated limit is found to indicate the maximum reactedness of a reactive scalar and is a limiting case of the CMC model. Conventional (unconditional) reactive scalar means obtained from the preliminary CMC predictions using the conserved scalar p.d.f. compare favorably with those found from experiment except where measuring position is relatively far upstream of the stoichiometric distance. Recommendations include applying a full CMC model to the flow and investigations both of the less significant terms in the conditional mean species equation and the small variation of the conditional mean with radius. Forms for the p.d.f.s, in addition to those found from experiments, could be useful for extending the CMC model to reactive flows in the atmosphere.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The hydrodynamic behaviour of a novel flat plate photocatalytic reactor for water treatment is investigated using CFD code FLUENT. The reactor consists of a reactive section that features negligible pressure drop and uniform illumination of the photocatalyst to ensure enhanced photocatalytic efficiency. The numerical simulations allowed the identification of several design issues in the original reactor, which include extensive boundary layer separation near the photocatalyst support and regions of flow recirculation that render a significant portion of the reactive area. The simulations reveal that this issue could be addressed by selecting the appropriate inlet positions and configurations. This modification can cause minimal pressure drop across the reactive zone and achieves significant uniformization of the tested pollutant on the photocatalyst surface. The influence of roughness elements type has also been studied with a view to identify their role on the distribution of pollutant concentration on the photocatalyst surface. The results presented here indicate that the flow and pollutant concentration field strongly depend on the geometric parameters and flow conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work we numerically model isothermal turbulent swirling flow in a cylindrical burner. Three versions of the RNG k-epsilon model are assessed against performance of the standard k-epsilon model. Sensitivity of numerical predictions to grid refinement, differing convective differencing schemes and choice of (unknown) inlet dissipation rate, were closely scrutinised to ensure accuracy. Particular attention is paid to modelling the inlet conditions to within the range of uncertainty of the experimental data, as model predictions proved to be significantly sensitive to relatively small changes in upstream flow conditions. We also examine the characteristics of the swirl--induced recirculation zone predicted by the models over an extended range of inlet conditions. Our main findings are: - (i) the standard k-epsilon model performed best compared with experiment; - (ii) no one inlet specification can simultaneously optimize the performance of the models considered; - (iii) the RNG models predict both single-cell and double-cell IRZ characteristics, the latter both with and without additional internal stagnation points. The first finding indicates that the examined RNG modifications to the standard k-e model do not result in an improved eddy viscosity based model for the prediction of swirl flows. The second finding suggests that tuning established models for optimal performance in swirl flows a priori is not straightforward. The third finding indicates that the RNG based models exhibit a greater variety of structural behaviour, despite being of the same level of complexity as the standard k-e model. The plausibility of the predicted IRZ features are discussed in terms of known vortex breakdown phenomena.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The flow resistance of an alluvial channel flow is not only affected by the Reynolds number and the roughness conditions but also the Froude number. Froude number is the most basic parameter in the case of the alluvial channel, thus effect of Froude number on resistance to flow should be considered in the formulation of the friction factor, which is not in the case of present available resistance equations. At present, no generally acceptable quantitative description of the effects of the Froude number on hydraulic resistance has been developed. Metamodeling technique, which is particularly useful in modeling a complex processes or where knowledge of the physics is limited, is presented as a tool complimentary to modeling friction factor in alluvial channels. Present work uses, a radial basis metamodel, which is a type of neural network modeling, to find the effect of Froude number on the flow resistance. Based on the experimental data taken from different sources, it has been found that the predicting capability of the present model is on acceptable level. Present work also tries in formulating an empirical equation for resistance in alluvial channel comprising all the three majorm, parameters, namely, roughness parameter, Froude number and Reynolds number. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Seepage through a sand bed affects the channel hydrodynamics, which in turn alters channel stability. Thus, the effect of seepage on its hydrodynamic parameters needs to be ascertained. The present work analyses spatially varied flow of a sand-bed channel subjected to seepage in the downward direction through a sand bed. Numerically calculated flow profiles affected by seepage have been verified using experimental observations. The present work also analyses the friction slope, velocity and bed shear stress variations along the channel for both seepage and no-seepage conditions. It was found that the downward seepage-induced channel flow has larger friction slope and bed shear stress than that of no-seepage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order to study the memory of the larger eddies in turbulent shear flow, experiments have been conducted on plane turbulent wakes undergoing transition from an initial (carefully prepared) equilibrium state to a different final one, as a result of a nearly impulsive pressure gradient. It is shown that under the conditions of the experiments the equations of motion possess self-preserving solutions in the sense of Townsend (1956), but the observed behaviour of the wake is appreciably different when the pressure gradient is not very small, as the flow goes through a slow relaxation process before reaching final equilibrium. Measurements of the Reynolds stresse show that the approach to a new equilibrium state is exponential, with a relaxation length of the order of 103 momentum thicknesses. It is suggested that a flow satisfying the conditions required by a self-preservation analysis will exhibit equilibrium only if the relaxation length is small compared with a characteristic streamwise length scale of the flow.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two models for large eddy simulation of turbulent reacting flow in homogeneous turbulence were studied. The sub-grid stress arising out of non-linearities of the Navier-Stokes equations were modeled using an explicit filtering approach. A filtered mass density function (FMDF) approach was used for closure of the sub-grid scalar fluctuations. A posteriori calculations, when compared with the results from the direct numerical simulation, indicate that the explicit filtering is adequate in representing the effect of sub-grid stress on the filtered velocity field in the absence of reaction. Discrepancies arise when reactions occur, but the FMDF approach suffices to account for sub-grid scale fluctuations of the reacting scalars, accurately.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Parabolized stability equation (PSE) models are being deve loped to predict the evolu-tion of low-frequency, large-scale wavepacket structures and their radiated sound in high-speed turbulent round jets. Linear PSE wavepacket models were previously shown to be in reasonably good agreement with the amplitude envelope and phase measured using a microphone array placed just outside the jet shear layer. 1,2 Here we show they also in very good agreement with hot-wire measurements at the jet center line in the potential core,for a different set of experiments. 3 When used as a model source for acoustic analogy, the predicted far field noise radiation is in reasonably good agreement with microphone measurements for aft angles where contributions from large -scale structures dominate the acoustic field. Nonlinear PSE is then employed in order to determine the relative impor-tance of the mode interactions on the wavepackets. A series of nonlinear computations with randomized initial conditions are use in order to obtain bounds for the evolution of the modes in the natural turbulent jet flow. It was found that n onlinearity has a very limited impact on the evolution of the wavepackets for St≥0. 3. Finally, the nonlinear mechanism for the generation of a low-frequency mode as the difference-frequency mode 4,5 of two forced frequencies is investigated in the scope of the high Reynolds number jets considered in this paper.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper attempts to unravel any relations that may exist between turbulent shear flows and statistical mechanics through a detailed numerical investigation in the simplest case where both can be well defined. The flow considered for the purpose is the two-dimensional (2D) temporal free shear layer with a velocity difference Delta U across it, statistically homogeneous in the streamwise direction (x) and evolving from a plane vortex sheet in the direction normal to it (y) in a periodic-in-x domain L x +/-infinity. Extensive computer simulations of the flow are carried out through appropriate initial-value problems for a ``vortex gas'' comprising N point vortices of the same strength (gamma = L Delta U/N) and sign. Such a vortex gas is known to provide weak solutions of the Euler equation. More than ten different initial-condition classes are investigated using simulations involving up to 32 000 vortices, with ensemble averages evaluated over up to 10(3) realizations and integration over 10(4)L/Delta U. The temporal evolution of such a system is found to exhibit three distinct regimes. In Regime I the evolution is strongly influenced by the initial condition, sometimes lasting a significant fraction of L/Delta U. Regime III is a long-time domain-dependent evolution towards a statistically stationary state, via ``violent'' and ``slow'' relaxations P.-H. Chavanis, Physica A 391, 3657 (2012)], over flow time scales of order 10(2) and 10(4)L/Delta U, respectively (for N = 400). The final state involves a single structure that stochastically samples the domain, possibly constituting a ``relative equilibrium.'' The vortex distribution within the structure follows a nonisotropic truncated form of the Lundgren-Pointin (L-P) equilibrium distribution (with negatively high temperatures; L-P parameter lambda close to -1). The central finding is that, in the intermediate Regime II, the spreading rate of the layer is universal over the wide range of cases considered here. The value (in terms of momentum thickness) is 0.0166 +/- 0.0002 times Delta U. Regime II, extensively studied in the turbulent shear flow literature as a self-similar ``equilibrium'' state, is, however, a part of the rapid nonequilibrium evolution of the vortex-gas system, which we term ``explosive'' as it lasts less than one L/Delta U. Regime II also exhibits significant values of N-independent two-vortex correlations, indicating that current kinetic theories that neglect correlations or consider them as O(1/N) cannot describe this regime. The evolution of the layer thickness in present simulations in Regimes I and II agree with the experimental observations of spatially evolving (3D Navier-Stokes) shear layers. Further, the vorticity-stream-function relations in Regime III are close to those computed in 2D Navier-Stokes temporal shear layers J. Sommeria, C. Staquet, and R. Robert, J. Fluid Mech. 233, 661 (1991)]. These findings suggest the dominance of what may be called the Kelvin-Biot-Savart mechanism in determining the growth of the free shear layer through large-scale momentum and vorticity dispersal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The application of large-eddy simulation (LES) to turbulent transport processes requires accurate prediction of the Lagrangian statistics of flow fields. However, in most existing SGS models, no explicit consideration is given to Lagrangian statistics. In this paper, we focus on the effects of SGS modeling on Lagrangian statistics in LES ranging from statistics determining single-particle dispersion to those of pair dispersion and multiparticle dispersion. Lagrangian statistics in homogeneous isotropic turbulence are extracted from direct numerical simulation (DNS) and the LES with a spectral eddy-viscosity model. For the case of longtime single-particle dispersion, it is shown that, compared to DNS, LES overpredicts the time scale of the Lagrangian velocity correlation but underpredicts the Lagrangian velocity fluctuation. These two effects tend to cancel one another leading to an accurate prediction of the longtime turbulent dispersion coefficient. Unlike the single-particle dispersion, LES tends to underestimate significantly the rate of relative dispersion of particle pairs and multiple-particles, when initial separation distances are less than the minimum resolved scale due to the lack of subgrid fluctuations. The overprediction of LES on the time scale of the Lagrangian velocity correlation is further confirmed by a theoretical analysis using a turbulence closure theory.