988 resultados para tungsten


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation of surface compositions on amorphous Ni80.4W1.5P18.1 alloy by O-2 oxidation and H-2 reduction treatments have been studied by XPS, UPS and ISS. It shows that addition of tungsten in the amorphous Ni-P alloy leads to dramatic changes of the relating component distributions in the surface layers before and after these treatments. Oxidation of a Ni80.4W1.5P18.1 amorphous alloy in 1 bar of oxygen at 513 K caused a significant segregation of nickel in different oxide states at the surface. The subsequent reduction of the oxidized surface with I bar hydrogen at 553 K resulted in only a small portion of Ni and P being reduced into elemental states, while most of them was found to combine to form a kind of nickel phosphate compound. On the other hand, under the same conditions, the oxidation and reduction of a Ni80P20 alloy gave rise to metallic Ni and elemental P as the predominate species on the alloy surface. The addition of W in the amorphous alloy might act as nuclei for a favorable formation of the phosphate structure which was proposed to be an active species for hydrogen-relating catalytic reactions. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Michael addition of substituted pyrazoles 2 to 1-alkynyl Fischer carbene complexes (CO)(5)M=C(OEt)(CdropCPh) (1) (a, M = Cr and b M = W) afforded (pyrazolyl)alkenyl Fischer carbene complexes (CO)(5)M=C(OEt)(CH=C(R(1)R(2)R(3)pz)Ph) (R(1)R(2)R(3)pz = pyrazolyl) 3 (M = Cr) and 4 (M = W), respectively, with an exclusive (E)-configuration in mild to excellent yields. The reaction of la and 3,5-dimethylpyrazole (2b) was monitored to demonstrate the formation and decomposition of complex 3b by H-1 NMR measurements in CDCl3 at 23degreesC. Complexes 3 and 4 were characterized with H-1, C-13{H-1} NMR, IR spectroscopies and elemental analysis. When the substituted pyrazoles were 3-methylpyrazole (2a) and 3,5-di-tert-butylpyrazole (2d), molecular structures of the corresponding (pyrazolyl)alkenyl Fischer carbene complexes 3a and 4d were characterized by X-ray crystallographic study. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beta-phase W, selectively grown at 440C had resistivity 20 micro-ohm cm and maximum layer thickness 100nm. Hydrogen passivation proved essential in this process. Higher deposition temperatures resulted in increased layer thickness but incorporated WSi2 and alpha- phase W. Self limiting W grown on polycrystalline and heavily doped silicon yielded reduced thickness. Boron is involved in the WF6 reduction reaction but phosphorus is not and becomes incorporated in the W layer. The paper establishes an optimised and novel CVD process suited to IC contact technology. A funded technology transfer contract with National Semiconductor Greenock (M Fallon) resulted from this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel CVD WSi2 technology with low series and contact resistance in SiGe HBTs was achieved. Specific contact resistance to Si1-xGex with 0

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A conventional thin film capacitor heterostructure, consisting of sol-gel deposited lead zirconium titanate (PZT) layers with sputtered platinum top and bottom electrodes, was subjected to fatiguing pulses at a variety of frequencies. The fatigue characteristics were compared to those of a similarly processed capacitor in which a ~20nm tungsten trioxide layer had been deposited, using pulsed laser deposition, between the ferroelectric and upper electrode. The expectation was that, because of its ability to accommodate considerable oxygen non-stoichiometry, tungsten trioxide (WO3) might act as an efficient sink for any oxygen vacancies flushed to the electrode-ferroelectric boundary layer during repetitive switching, and hence would improve the fatigue characteristics of the thin film capacitor. However, it was found that, in general, the addition of tungsten trioxide actually increases the rate of fatigue. It appears that any potential benefit from the WO3, in terms of absorbing oxygen vacancies, is far outweighed by it causing dramatically increased charge injection in the system.