943 resultados para tumor necrosis factor inhibitor
Resumo:
To test the hypothesis that the lectin-like domain of tumor necrosis factor, mimicked by the TIP peptide, can improve lung function after unilateral orthotopic lung isotransplantation. Because of a lack of a specific treatment for ischemia reperfusion-mediated lung injury, accompanied by a disrupted barrier integrity and a dysfunctional alveolar liquid clearance, alternative therapies restoring these parameters after lung transplantation are required.
Resumo:
Fas/CD95 is a critical mediator of cell death in many chronic and acute liver diseases and induces apoptosis in primary hepatocytes in vitro. In contrast, the proinflammatory cytokine tumor necrosis factor α (TNFα) fails to provoke cell death in isolated hepatocytes but has been implicated in hepatocyte apoptosis during liver diseases associated with chronic inflammation. Here we report that TNFα sensitizes primary murine hepatocytes cultured on collagen to Fas ligand (FasL)-induced apoptosis. This synergism is time-dependent and is specifically mediated by TNFα. Fas itself is essential for the sensitization, but neither Fas up-regulation nor endogenous FasL is responsible for this effect. Although FasL is shown to induce Bid-independent apoptosis in hepatocytes cultured on collagen, the sensitizing effect of TNFα is clearly dependent on Bid. Moreover, both c-Jun N-terminal kinase activation and Bim, another B cell lymphoma 2 homology domain 3 (BH3)-only protein, are crucial mediators of TNFα-induced apoptosis sensitization. Bim and Bid activate the mitochondrial amplification loop and induce cytochrome c release, a hallmark of type II apoptosis. The mechanism of TNFα-induced sensitization is supported by a mathematical model that correctly reproduces the biological findings. Finally, our results are physiologically relevant because TNFα also induces sensitivity to agonistic anti-Fas-induced liver damage. CONCLUSION: Our data suggest that TNFα can cooperate with FasL to induce hepatocyte apoptosis by activating the BH3-only proteins Bim and Bid.
Resumo:
In children treated with immunosuppressive medication such as methotrexate and tumor necrosis factor-alpha (TNF-α) inhibitors, additional immunizations are recommended because of increased susceptibility to infections. However, it is unclear if adequate antibody response to vaccinations can be established in children receiving methotrexate and/or TNF-α inhibitors. In a prospective open label study, we assessed seroprotection and seroconversion following influenza vaccination during 2 seasons (6 strains) in 36 children with autoimmune disease treated either with methotrexate (n=18), TNF-α inhibitors (n=10) or both (n=8) and a control group of 16 immunocompetent children. Influenza antibody titers were determined by hemagglutinin inhibition assay, before and 4-8 weeks after vaccination. Post-vaccination seroprotection (defined as a titer ≥1:40) did not significantly differ between immunosuppressed and immunocompetent subjects. Seroconversion, defined as the change from a nonprotective (< 1:40) to a protective titer (≥1:40) with at least a 4-fold titer increase, was less likely to occur in immunosuppressed patients, although no significant difference from the control group was established. Safety evaluation of vaccination showed no serious adverse events. Children receiving methotrexate and/or TNF-α inhibitors can be safely and effectively immunized against influenza, with a seroprotection after vaccination comparable to immunocompetent children.
Resumo:
Macrophage migration inhibitory factor (MIF) is an important cytokine involved in the regulation of innate immunity and present at increased levels during inflammatory responses. Here we demonstrate that mature blood and tissue neutrophils constitutively express MIF as a cytosolic protein not associated with azurophil granules. Functionally active MIF, but not proteases stored in azurophil granules, was released from apoptotic neutrophils following short term tumor necrosis factor (TNF)-alpha stimulation in a caspase-dependent manner and prior to any detectable phagocytosis by monocyte-derived macrophages. Moreover, TNF-alpha-mediated MIF release was blocked by glyburide and propenicide, both inhibitors of ATP-binding cassette-type transporters, suggesting that this transporter system is activated during neutrophil apoptosis. Taken together, apoptotic mature neutrophils release MIF upon short term TNF-alpha stimulation. Therefore, apoptosis may not always occur without the induction of pro-inflammatory mechanisms.
Resumo:
We performed mRNA in situ hybridization for TNF-alpha and IL-1beta from infant rats with group B streptococcal meningitis. Induction of both cytokines was seen in the ependyma and the meninges at 4 h. Both cytokines were expressed in the brain parenchyma at 12 h. Induction of IL-1beta mRNA was seen in vessels within the brain cortex. Neutrophilic infiltrate at all time points examined was minimal and could not account for the observed cytokine expression.
Resumo:
To evaluate the role of tumor necrosis factor-alpha (TNF-alpha) in neuronal injury in experimental group B streptococcal meningitis, infected neonatal rats were treated with a monoclonal antibody against TNF-alpha (20 mg/kg intraperitoneally) or saline given at the time of infection. Histopathology after 24 h showed necrosis in the cortex and apoptosis in the hippocampal dentate gyrus. Treated animals had significantly less hippocampal injury than did controls (P < .001) but had similar cortical injury and cerebrospinal fluid (CSF) inflammation. The antibody was then administered directly intracisternally (170 microg) to test whether higher CSF concentrations reduced inflammation or cortical injury. Again, hippocampal apoptosis was significantly reduced (P < .01), while cortical injury and inflammation were not. Thus, TNF-alpha played a critical role in neuronal apoptosis in the hippocampus, while it was not essential for the development of inflammation and cortical injury in this model.
Resumo:
The enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) catalyzes the conversion of inactive to active glucocorticoids. 11beta-HSD1 plays a crucial role in the pathogenesis of obesity and controls glucocorticoid actions in inflammation. Several studies have demonstrated that TNF-alpha increases 11beta-HSD1 mRNA and activity in various cell models. Here, we demonstrate that mRNA and activity of 11beta-HSD1 is increased in liver tissue from transgenic mice overexpressing TNF-alpha, indicating that this effect also occurs in vivo. To dissect the molecular mechanism of this increase, we investigated basal and TNF-alpha-induced transcription of the 11beta-HSD1 gene (HSD11B1) in HepG2 cells. We found that TNF-alpha acts via p38 MAPK pathway. Transient transfections with variable lengths of human HSD11B1 promoter revealed highest activity with or without TNF-alpha in the proximal promoter region (-180 to +74). Cotransfection with human CCAAT/enhancer binding protein-alpha (C/EBPalpha) and C/EBPbeta-LAP expression vectors activated the HSD11B1 promoter with the strongest effect within the same region. Gel shift and RNA interference assays revealed the involvement of mainly C/EBPalpha, but also C/EBPbeta, in basal and only of C/EBPbeta in the TNF-alpha-induced HSD11B1 expression. Chromatin immunoprecipitation assay confirmed in vivo the increased abundance of C/EBPbeta on the proximal HSD11B1 promoter upon TNF-alpha treatment. In conclusion, C/EBPalpha and C/EBPbeta control basal transcription, and TNF-alpha upregulates 11beta-HSD1, most likely by p38 MAPK-mediated increased binding of C/EBPbeta to the human HSD11B1 promoter. To our knowledge, this is the first study showing involvement of p38 MAPK in the TNF-alpha-mediated 11beta-HSD1 regulation, and that TNF-alpha stimulates enzyme activity in vivo.
Resumo:
The cytokine tumor-necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) has been shown to preferentially induce apoptosis in cancer cells. A previous study of our group demonstrated that non-small cell lung cancer cell lines can be sensitized to Apo2L/TRAIL-induced apoptosis by chemotherapeutic agents. The aim of the present study was the evaluation of these results in a model of primary culture of non-small cell lung cancer.
Resumo:
To study the specific role of transmembrane tumor necrosis factor (tmTNF) in protective and pathological responses against the gastrointestinal helminth Trichinella spiralis, we compared the immune responses of TNF-alpha/lymphotoxin alpha (LTalpha)(-/-) mice expressing noncleavable transgenic tmTNF to those of TNF-alpha/LTalpha(-/-) and wild-type mice. The susceptibility of TNF-alpha/LTalpha(-/-) mice to T. spiralis infection was associated with impaired induction of a protective Th2 response and the lack of mucosal mastocytosis. Although tmTNF-expressing transgenic (tmTNF-tg) mice also had a reduced Th2 response, the mast cell response was greater than that observed in TNF-alpha/LTalpha(-/-) mice and was sufficient to induce the expulsion of the parasite. T. spiralis infection of tmTNF-tg mice resulted in significant intestinal pathology characterized by villus atrophy and crypt hyperplasia comparable to that induced following the infection of wild-type mice, while pathology in TNF-alpha/LTalpha(-/-) mice was significantly reduced. Our data thus indicate a role for tmTNF in host defense against gastrointestinal helminths and in the accompanying enteropathy. Furthermore, they also demonstrate that TNF-alpha is required for the induction of Th2 immune responses related to infection with gastrointestinal helminth parasites.
Resumo:
OBJECTIVE: Tumor necrosis factor (TNF) inhibitors have revolutionized the treatment of severe rheumatoid arthritis (RA), yet drug discontinuation is common. The aim of this study was to compare treatment retention rates and specific causes of anti-TNF discontinuation in a population-based RA cohort. METHODS: All patients treated with etanercept, infliximab, or adalimumab within the Swiss Clinical Quality Management RA cohort between 1997 and 2006 were included in the study. Causes of treatment discontinuation were broadly categorized as adverse events (AEs) or nontoxic causes, and further subdivided into specific categories. Specific causes of treatment interruption were analyzed using a Cox proportional hazards model and adjusted for potential confounders. RESULTS: A total of 2,364 anti-TNF treatment courses met the inclusion criteria. Treatment discontinuation was reported 803 times: 309 with etanercept, 249 with infliximab, and 245 with adalimumab. Drug inefficacy represented the largest single cause of treatment discontinuation (55.8% of cases). The median time of receiving anti-TNF therapy was 37 months, but discontinuation rates differed between the 3 anti-TNF agents (P < 0.001), with shorter retention rates for infliximab (hazard ratio [HR] 1.24, 99% confidence interval [99% CI] 1.01-1.51). The specific causes of treatment discontinuation revealed an increased risk of AEs with infliximab (HR 1.4, 99% CI 1.003-1.96), mostly due to an increased risk of infusion or allergic reactions (HR 2.11, 99% CI 1.23-3.62). Other discontinuation causes were equally distributed between the anti-TNF agents. CONCLUSION: In this population, infliximab was associated with higher overall discontinuation rates compared with etanercept and adalimumab, which is mainly due to an increased risk of infusion or allergic reactions.
Resumo:
Tumor necrosis factor (TNF) is cleaved proteolytically from a 26-kilodalton transmembrane precursor protein into secreted 17-kilodalton monomers. Transmembrane (tm) and secreted trimeric TNF are biologically active and may mediate distinct activities. We assessed the consequences of a complete inhibition of TNF processing on the course of colitis in recombination activating gene (RAG)2 -/- mice on transfer of CD4 CD45RB hi T cells.
Resumo:
BACKGROUND: TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5) and two decoy (DcR1, and DcR2) receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM), oral premalignancies (OPM), and primary and metastatic oral squamous cell carcinomas (OSCC) in order to characterize the changes in their expression patterns during OSCC initiation and progression. METHODS: DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL) in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. RESULTS: Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. CONCLUSION: Loss of TRAIL expression is an early event during oral carcinogenesis and may be involved in dysregulation of apoptosis and contribute to the molecular carcinogenesis of OSCC. Differential expressions of TRAIL receptors in OSCC do not appear to play a crucial role in their apoptotic rate or metastatic progression.
Resumo:
Regulation of colonic epithelial cell proliferation and differentiation remains poorly understood due to the inability to design a model system which recapitulates these processes. Currently, properties of "differentiation" are studied in colon adenocarcinoma cell lines which can be induced to express some, but not all of the phenotypes of normal cells. In this thesis, the DiFi human colon adenocarcinoma cell line is utilized as an in vitro model system in which to study mucin production. In response to treatment with tumor necrosis factor-alpha, DiFi cells acquire some properties of mucin-producing goblet cells including altered morphology, increased reactivity to wheat germ agglutinin, and increased mucin production as determined by RNA expression as well as reactivity with the MUC-1 antibodies, HMFG-1 and SM-3. Thus, TNF-treated DiFi cells represent one of the few in vitro systems in which mucin expression can be induced.^ DiFi cells express an activated pp60$\sp{{\rm c}-src},$ as do most colon adenocarcinomas and derived cell lines, as well as an amplified epidermal growth factor (EGF) receptor. To assess potential changes in these enzymes during induction of differentiation characteristics, potential changes in the levels and activities of these enzymes were examined. For pp60$\sp{{\rm c}-src},$ no changes were observed in protein levels, specific activity of the kinase, cellular localization, or phosphorylation pattern as determined by Staphylococcus aureus V8 protease partial proteolytic mapping after induction of goblet cell-like phenotypic changes. These results suggest that pp60$\sp{{\rm c}-src}$ is regulated differentially in goblet cells than in absorptive cells, as down-modulation of pp60$\sp{{\rm c}-src}$ kinase occurs in the latter. Therefore, effects on pp60$\sp{{\rm c}-src}$ may be critical in colon regulation, and may be important in generating the various colonic epithelial cell types.^ In contrast to pp60$\sp{{\rm c}-src},$ EGF receptor tyrosine kinase activity decreased ($<$5-fold) after TNF treatment and at the time in which morphologic changes were observed. Similar decreases in tyrosine phosphorylation of EGF receptor were observed as assessed by immunoblotting with an anti-phosphotyrosine antibody. In addition, ($\sp{125}$I) -EGF cell surface binding was reduced approximately 3-fold following TNF treatment with a concomitant reduction in receptor affinity ($<$2-fold). These results suggest that modulation of EGF receptor may be important in goblet cell differentiation. In contrast, other published studies have demonstrated that increases in EGF receptor mRNA and in ($\sp{125}$I) -EGF binding accompany differentiation toward the absorptive cell phenotype. Therefore, differential regulation of both EGF receptor and pp60$\sp{{\rm c}-src}$ occur along the goblet cell and absorptive cell differentiation pathways. Thus, my results suggest that TNF-treated DiFi cells represent a unique system in which to study distinct patterns of regulation of pp60$\sp{{\rm c}-src}$ and EGF receptor in colonic cells, and to determine if increased MUC-1 expression is an early event in goblet cell differentiation. ^
Resumo:
Human pro-TNF-$\alpha$ is a 26 kd type II transmembrane protein, and it is the precursor of 17 kd mature TNF. Pro-TNF release mature from its extracellular domain by proteolytic cleavage between resideu Ava ($-$1) and Val (+1). Both forms of TNF are biologically active and the native form of mature TNF is a bell-shaped trimer. The structure of pro-TNF was studied both in intact cell system and in an in vitro translation system by chemical crosslinking. We found that human pro-TNF protein exist as a trimer in intact cells (LPS-induced THP-1 cells and TNF cDNA transfected COS-3 cells) and this trimeric structure is assembled intracellularly, possibly in the ER. By analysis several deletion mutants, we observed a correlation between expression of pro-TNF cytotoxicity in a juxtacrine fashion and detection of the trimer, suggesting the trimeric structure is very important for its biologic activity. With a series of deletion mutants in the linking domain, we found that the small deletion did not block the cleavage and large deletion did regardless of the presence or absence of the native cleavage site, suggesting that the length of the residues between the plasma membrane and the base of the trimer determines the rate of the cleavage, possibly by blocking the accessibility of the cleavage enzyme to its action site. Our data also suggest that the native cleavage site is not sufficient for the release of mature TNF and alternative cleavage site(s) exists. ^