997 resultados para tumor antigen


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The avidity of the T-cell receptor (TCR) for antigenic peptides presented by the peptide-MHC (pMHC) on cells is a key parameter for cell-mediated immunity. Yet a fundamental feature of most tumor antigen-specific CD8(+) T cells is that this avidity is low. In this study, we addressed the need to identify and select tumor-specific CD8(+) T cells of highest avidity, which are of the greatest interest for adoptive cell therapy in patients with cancer. To identify these rare cells, we developed a peptide-MHC multimer technology, which uses reversible Ni(2+)-nitrilotriacetic acid histidine tags (NTAmers). NTAmers are highly stable but upon imidazole addition, they decay rapidly to pMHC monomers, allowing flow-cytometric-based measurements of monomeric TCR-pMHC dissociation rates of living CD8(+) T cells on a wide avidity spectrum. We documented strong correlations between NTAmer kinetic results and those obtained by surface plasmon resonance. Using NTAmers that were deficient for CD8 binding to pMHC, we found that CD8 itself stabilized the TCR-pMHC complex, prolonging the dissociation half-life several fold. Notably, our NTAmer technology accurately predicted the function of large panels of tumor-specific T cells that were isolated prospectively from patients with cancer. Overall, our results demonstrated that NTAmers are effective tools to isolate rare high-avidity cytotoxic T cells from patients for use in adoptive therapies for cancer treatment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tumor antigen-specific CD4(+) T cells generally orchestrate and regulate immune cells to provide immune surveillance against malignancy. However, activation of antigen-specific CD4(+) T cells is restricted at local tumor sites where antigen-presenting cells (APCs) are frequently dysfunctional, which can cause rapid exhaustion of anti-tumor immune responses. Herein, we characterize anti-tumor effects of a unique human CD4(+) helper T-cell subset that directly recognizes the cytoplasmic tumor antigen, NY-ESO-1, presented by MHC class II on cancer cells. Upon direct recognition of cancer cells, tumor-recognizing CD4(+) T cells (TR-CD4) potently induced IFN-γ-dependent growth arrest in cancer cells. In addition, direct recognition of cancer cells triggers TR-CD4 to provide help to NY-ESO-1-specific CD8(+) T cells by enhancing cytotoxic activity, and improving viability and proliferation in the absence of APCs. Notably, the TR-CD4 either alone or in collaboration with CD8(+) T cells significantly inhibited tumor growth in vivo in a xenograft model. Finally, retroviral gene-engineering with T cell receptor (TCR) derived from TR-CD4 produced large numbers of functional TR-CD4. These observations provide mechanistic insights into the role of TR-CD4 in tumor immunity, and suggest that approaches to utilize TR-CD4 will augment anti-tumor immune responses for durable therapeutic efficacy in cancer patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cytotoxic T cells recognize, via their T cell receptors (TCRs), small antigenic peptides presented by the major histocompatibility complex (pMHC) on the surface of professional antigen-presenting cells and infected or malignant cells. The efficiency of T cell triggering critically depends on TCR binding to cognate pMHC, i.e., the TCR-pMHC structural avidity. The binding and kinetic attributes of this interaction are key parameters for protective T cell-mediated immunity, with stronger TCR-pMHC interactions conferring superior T cell activation and responsiveness than weaker ones. However, high-avidity TCRs are not always available, particularly among self/tumor antigen-specific T cells, most of which are eliminated by central and peripheral deletion mechanisms. Consequently, systematic assessment of T cell avidity can greatly help distinguishing protective from non-protective T cells. Here, we review novel strategies to assess TCR-pMHC interaction kinetics, enabling the identification of the functionally most-relevant T cells. We also discuss the significance of these technologies in determining which cells within a naturally occurring polyclonal tumor-specific T cell response would offer the best clinical benefit for use in adoptive therapies, with or without T cell engineering.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The function of antigen-specific CD8+ T cells, which may protect against both infectious and malignant diseases, can be impaired by ligation of their inhibitory receptors, which include CTL-associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1). Recently, B and T lymphocyte attenuator (BTLA) was identified as a novel inhibitory receptor with structural and functional similarities to CTLA-4 and PD-1. BTLA triggering leads to decreased antimicrobial and autoimmune T cell responses in mice, but its functions in humans are largely unknown. Here we have demonstrated that as human viral antigen-specific CD8+ T cells differentiated from naive to effector cells, their surface expression of BTLA was gradually downregulated. In marked contrast, human melanoma tumor antigen-specific effector CD8+ T cells persistently expressed high levels of BTLA in vivo and remained susceptible to functional inhibition by its ligand herpes virus entry mediator (HVEM). Such persistence of BTLA expression was also found in tumor antigen-specific CD8+ T cells from melanoma patients with spontaneous antitumor immune responses and after conventional peptide vaccination. Remarkably, addition of CpG oligodeoxynucleotides to the vaccine formulation led to progressive downregulation of BTLA in vivo and consequent resistance to BTLA-HVEM-mediated inhibition. Thus, BTLA activation inhibits the function of human CD8+ cancer-specific T cells, and appropriate immunotherapy may partially overcome this inhibition.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

T-cells specific for foreign (e.g., viral) antigens can give rise to strong protective immune responses, whereas self/tumor antigen-specific T-cells are thought to be less powerful. However, synthetic T-cell vaccines composed of Melan-A/MART-1 peptide, CpG and IFA can induce high frequencies of tumor-specific CD8 T-cells in PBMC of melanoma patients. Here we analyzed the functionality of these T-cells directly ex vivo, by multiparameter flow cytometry. The production of multiple cytokines (IFNγ, TNFα, IL-2) and upregulation of LAMP-1 (CD107a) by tumor (Melan-A/MART-1) specific T-cells was comparable to virus (EBV-BMLF1) specific CD8 T-cells. Furthermore, phosphorylation of STAT1, STAT5 and ERK1/2, and expression of CD3 zeta chain were similar in tumor- and virus-specific T-cells, demonstrating functional signaling pathways. Interestingly, high frequencies of functionally competent T-cells were induced irrespective of patient's age or gender. Finally, CD8 T-cell function correlated with disease-free survival. However, this result is preliminary since the study was a Phase I clinical trial. We conclude that human tumor-specific CD8 T-cells can reach functional competence in vivo, encouraging further development and Phase III trials assessing the clinical efficacy of robust vaccination strategies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vaccines which use the strategy of fusing adjuvant murine â-defensin2 (mBD2) to an antigen in order to elicit stronger anti-antigen immune responses are referred to as murine â-defensin2 (mBD2) vaccines. Previous studies have validated the potential of mBD2 vaccines, thus in this study we focus on increasing vaccine efficacy as well as mechanism elucidation. Initially, we demonstrate superior IFN-ã release levels by antigen specific effector T cells when antigen is crosspresented by dendritic cells (DC) which absorbed mBD2 vaccine (mBD2 fused antigen protein) over antigen alone. We move unto an in vivo model and note significant increases in the expansion of antigen specific class I T cells but not class II T cells when receiving mBD2 vaccine over antigen alone. Further, knowing mBD2’s link with CC chemokine receptor 6 (CCR6) and Toll-like receptor 4 (TLR4) we note that this enhanced class I T cell expansion is CCR6 independent but TLR4 dependent. With anti-tumor responses desired, we demonstrate in tumor protection experiments with mice, compelling tumor protection when combining adoptive T cell therapy and mBD2 vaccine immunization. We further note that mBD2 vaccines are not limited by the antigen and characterize a viable strategy for enhancing tumor antigen immunogenicity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Human colon cancer cells, LS180 and 174T, exhibit monoclonal antibody (mAb) 1083-17-1A and 5E113 defined tumor associated antigens. By radioimmunoassay, LS180 cells expressed the highest amount of mAb1083 defined antigens among the cell lines tested. Another mAb, 5E113, competed with mAb1083 for binding to LS180 cells, suggesting that both mAbs might bind onto identical (or adjacent) epitopes. By Scatchard analysis, about one million copies of the epitopes were present on LS180 colon cancer cells. The affinity of mAb1083 binding to the cells was 2.97 x 10('10) M('-1); the Sipsian heteroclonality value of mAb1083 was 0.9, thus approximating a single clone of reactive antibody. The qualitative studies showed that the epitopes were probably not carbohydrate because of their sensitivity to proteinases and not to mixed glucosidases and neuraminidase. The tunicamycin homologue B(,2) inhibited the incoporation of ('3)H-labeled galactose but not uptake of ('35)S-labeled methionine, nor expression of monoclonal antibody defined antigens providing further evidence to exclude the possibility of carbohydrate epitopes. There was evidence that the epitope might be partially masked in its "native" conformation, since short exposure or low dose treatment with proteases increased mAbs binding. The best detergent for antigen extraction, as detected by dot blotting and competitive inhibition assays, was octylglucoside at 30 mM concentration. Three methods, immunoprecipitation, Western blotting and photoaffinity labeling, were used to determine the molecular nature of the antigens. These results demonstrated that the antibody bound both 43 K daltons (KD) and 22 KD proteins.^ An in vitro cell-mediated immune approach was also used to attempt identifying function for the antigens. The strategy was to use mAbs to block cytotoxic effector cell killing. However, instead of blocking, the mAb1083 and 5E113 showed strong antibody-dependent cell-mediated cytotoxicities (ADCCs) in the in vitro xenoimmune assay system. In addition, cytotoxic T lymphocytes (CTLs), natural killer cells, and K cell activity were found. Since even the F(ab')2 fragment of mAbs did not inhibit the cytolytic effect, the mAbs defined antigens may not be major target molecules for CTLs. In summary, two molecular species of tumor antigen(s) were identified by mAbs to be present on colon tumor cell lines, LS180 and LS174T. (Abstract shortened with permission of author.) ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Allogeneic bone marrow transplantation (BMT) is known to induce a beneficial anti-tumor immune response called graft-versus-tumor (GVT) activity. However, GVT activity is closely associated with graft-versus-host disease (GVHD), a potentially fatal immune response against antigens on normal recipient tissues. The T-cell populations mediating these two processes are often overlapping, but studies have shown that some donor T-cells can be tumor-specific. Therefore, the goal of this study was to develop strategies for preferentially activating donor T-cells capable of mediating GVT activity but not GVHD. The three hypotheses tested were: (1) Pre-transplant immunization of BMT donors with a recipient-derived tumor cell vaccine will induce a relative increase in GVT activity as compared to GVHD. (2) Post-transplant tumor immunization of BMT recipients will enhance GVT activity without exacerbating GVHD. (3) Pre-transplant immunization of BMT donors against a tumor-specific antigen will enhance GVT activity without exacerbating GVHD. ^ To test the first two hypotheses, C3H.SW mice (MHC-matched donors) were immunized with a C57BL/6 (recipient)-derived tumor cell vaccine (leukemia or fibrosarcoma) prior to BMT, or recipients were immunized starting one month after BMT. Both donor and recipient immunization led to a significant increase in GVT activity (enhanced recipient survival and decreased tumor growth). However, donor immunization also increased fatal GVHD, which was at least partially due to activation of alloreactive T-cells recognizing the immunodominant minor histocompatibility antigen B6dom1. GVT immunity following recipient immunization was not associated with an exacerbation of GVHD or a response to B6dom1. ^ To test the third hypothesis, influenza nucleoprotein (NP) was used as a model tumor antigen. C3H.SW donors were immunized against NP prior to BMT, which led to a significant increase in GVT activity. Although recipients were not completely protected against growth of antigen loss variant tumors, there was no increase in GVHD. ^ In conclusion, (1) immunization of allogeneic BMT donors with a recipient-derived tumor cell vaccine substantially increases GVT activity but also exacerbates GVHD, (2) post-transplant tumor immunization of allogeneic BMT recipients significantly increases GVT activity and survival without exacerbating GVHD, and (3) immunization of allogeneic BMT donors against a tumor-specific antigen significantly enhances GVT activity without exacerbating GVHD. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Regulatory T cells expressing the fork-head box transcription factor 3 (Foxp3) play a central role in the dominant control of immunological tolerance. Compelling evidence obtained from both animal and clinical studies have now linked the expansion and accumulation of Foxp3+ regulatory T cells associated with tumor lesions to the failure of immune-mediated tumor rejection. However, further progress of the field is hampered by the gap of knowledge regarding their phenotypic, functional, and the developmental origins in which these tumor-associated Foxp3+ regulatory T cells are derived. Here, we have characterized the general properties of tumor-associated Foxp3+ regulatory T cells and addressed the issue of tumor microenvironment mediated de-novo induction by utilizing a well known murine tumor model MCA-205 in combination with our BAC Foxp3-GFP reporter mice and OT-II TCR transgenic mice on the RAG deficient background (RAG OT-II). De-novo induction defines a distinct mechanism of converting non-regulatory precursor cells to Foxp3+ regulatory T cells in the periphery as opposed to the expansion of pre-existing regulatory T cells formed naturally during thymic T cell development. This mechanism is of particularly importance to how tumors induce tumor-antigen-specific suppressor cells to subvert anti-tumor immune responses. Our study has found that tumor-associated Foxp3+ regulatory T cells are highly activated, undergo vigorous proliferation, are more potent by in-vitro suppression assays, and express higher levels of membrane-bound TGF-β1 than non-tumor regulatory T cells. With Foxp3-GFP reporter mice or RAG OT-II TCR transgenic mice, we show that tumor tissue can induce detectable de-novo generation of Foxp3+ regulatory T cells of both polyclonal or antigen specific naïve T cells. This process was not only limited for subcutaneous tumors but for lung tumors as well. Furthermore, this process required the inducing antigen to be co-localized within the tumor tissue. Examination of tumor tissue revealed an abundance of myeloid CD11b+ antigen-presenting cells that were capable of inducing Foxp3+ regulatory T cells. Taken together, these findings elucidate the general attributes and origins of tumor-associated Foxp3+ regulatory T cells in the tumor microenvironment and in their role in the negative regulation of tumor immunity.^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cancer antigen 125 (CA125) is a tumor antigen that is routinely used to monitor the disease progress and the outcome of treatment in ovarian cancer patients. Elevated serum levels of CA125 are detected in over 80% of epithelial ovarian cancer patients. CA125 is a high molecular weight (>1M Dalton) mucin-type glycoprotein encoded by the MUC16 gene on human chromosome 19. Although MUC16 has served as the best serum marker for monitoring growth of ovarian cancer, roles for MUC16 in normal physiology and ovarian cancer are largely unknown. To understand the biological functions of MUC16, I characterized a mouse Muc16 homolog on chromosome 9 by means of expression pattern profiling, phenotype analysis of Muc16 knockout mice, and in vitro and in vivo studies of Muc16 null transformed ovarian surface epithelial (OSE) cells. ^ The mouse Muc16 homolog shares a conserved genomic structure with human MUC16. In addition to being expressed in mouse ovarian cancer, mouse Muc16 mRNA and protein were expressed in the mesothelia covering the heart, lung, ovary, oviduct, spleen, testis, and uterus. The conserved genomic structure and expression pattern of mouse Muc16 to human MUC16 suggests that mouse Muc16 is the ortholog of human MUC16. To understand the biological functions of Muc16, I generated Muc16 knockout mice. Muc16 knockout mice were viable, fertile and normal by one year of age. However, between 18 and 24 months of age, Muc16 knockout mice developed various tissue abnormalities such as ovarian cysts and tumors of the liver and other peritoneal organs. To determine the role of MUC16 in ovarian cancer progression, I established Muc16 null transformed ovarian surface epithelial (OSE) cell lines, following the same method to develop mouse model of epithelial ovarian cancer (Orsulic et al., 2002). Loss of Muc16 did not affect cell morphology, cell proliferation rate, or tumorigenic potential. However, Muc16-null OSE cells showed decreased attachment to extracellular matrix proteins as well as to primary mouse peritoneal mesothelial cells. Peritoneal mesothelia are the most frequent implantation sites of ovarian cancer. Furthermore, a pilot transplantation assay suggests that Muc16 null transformed OSE cells formed less disseminated tumors in the peritoneal cavity compared to wild-type OSE cells. ^ In conclusion, these results demonstrate that MUC16 is not required for normal mouse development or reproduction, but plays important roles in tissue homeostasis, ovarian cancer cell adhesion and dissemination. This study provides the first in vivo evidence of the roles of MUC16 in development, as well as ovarian cancer progression and dissemination. These studies offer valuable insights into possible mechanisms of ovarian cancer development and potential molecular targets for ovarian cancer treatment. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In search of novel genes expressed in metastatic prostate cancer, we subtracted cDNA isolated from benign prostatic hypertrophic tissue from cDNA isolated from a prostate cancer xenograft model that mimics advanced disease. One novel gene that is highly expressed in advanced prostate cancer encodes a 339-amino acid protein with six potential membrane-spanning regions flanked by hydrophilic amino- and carboxyl-terminal domains. This structure suggests a potential function as a channel or transporter protein. This gene, named STEAP for six-transmembrane epithelial antigen of the prostate, is expressed predominantly in human prostate tissue and is up-regulated in multiple cancer cell lines, including prostate, bladder, colon, ovarian, and Ewing sarcoma. Immunohistochemical analysis of clinical specimens demonstrates significant STEAP expression at the cell–cell junctions of the secretory epithelium of prostate and prostate cancer cells. Little to no staining was detected at the plasma membranes of normal, nonprostate human tissues, except for bladder tissue, which expressed low levels of STEAP at the cell membrane. Protein analysis located STEAP at the cell surface of prostate-cancer cell lines. Our results support STEAP as a cell-surface tumor-antigen target for prostate cancer therapy and diagnostic imaging.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many peripheral solid tumors such as sarcomas and carcinomas express tumor-specific antigens that can serve as targets for immune effector T cells. Nevertheless, overall immune surveillance against such tumors seems relatively inefficient. We studied immune surveillance against a s.c. sarcoma expressing a characterized viral tumor antigen. Surprisingly, the tumor cells were capable of inducing a protective cytotoxic T cell response if transferred as a single-cell suspension. However, if they were transplanted as small tumor pieces, tumors readily grew. Tumor growth correlated strictly with (i) failure of tumor cells to reach the draining lymph nodes and (ii) absence of primed cytotoxic T cells. Cytotoxic T cells were not tolerant or deleted because a tumor antigen-specific cytotoxic T cell response was readily induced in lymphoid tissue by immunization with virus or with tumor cells even in the presence of large tumors. Established tumors were rejected by vaccine-induced effector T cells if effector T cells were maintained by prolonged or repetitive vaccination, but not by single-dose vaccination. Thus, in addition to several other tumor-promoting parameters, some antigenic peripheral sarcomas—and probably carcinomas—may grow not because they anergize or tolerize tumor-specific T cells, but because such tumors are immunologically dealt with as if they were in a so-called immunologically privileged site and are ignored for too long.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transgenic mice expressing human HOX11 in B lymphocytes die prematurely from lymphomas that initiate in the spleen and frequently disseminate to distant sites. Preneoplastic hematopoiesis in these mice is unperturbed. We now report that expression of the HOX11 transgene does not affect the ability of dendritic cells (DCs) to process and present foreign peptides and activate antigen-specific T cell responses. We also show that nontransgenic DCs presenting peptides derived from the human HOX11 protein are highly efficient stimulators of autologous T cells, whereas transgenic T cells are nonresponsive to peptides derived from the HOX11 transgene and the murine Meis1 protein. HOX11 transgenic mice thus show normal development of tolerance to immunogenic antigens expressed throughout B cell maturation. DCs pulsed with cell lysates prepared from lymphomas, obtained from HOX11 transgenic mice with terminal lymphoma, activate T cells from nontransgenic and premalignant transgenic mice, whereas T cells isolated from lymphomatous transgenic mice are nonresponsive to autologous tumor cell antigens. These data indicate that HOX11 lymphoma cells express tumor-rejection antigens that are recognized as foreign in healthy transgenic mice and that lymphomagenesis is associated with the induction of anergy to tumor antigen-specific T cells. These findings are highly relevant for the development of immunotherapeutic protocols for the treatment of lymphoma.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although both CD4+ and CD8+ T cells are clearly required to generate long-lasting anti-tumor immunity induced by s.c. vaccination with interleukin 2 (IL-2)-transfected, irradiated M-3 clone murine melanoma cells, some controversy continues about the site and mode of T-cell activation in this system. Macrophages, granulocytes, and natural killer cells infiltrate the vaccination site early after injection into either syngeneic euthymic DBA/2 mice or athymic nude mice and eliminate the inoculum within 48 hr. We could not find T cells at the vaccination site, which argues against the concept that T-cell priming by the IL-2-secreting cancer cells occurs directly at that location. However, reverse transcription-PCR revealed transcripts indicative of T-cell activation and expansion in the draining lymph nodes of mice immunized with the IL-2-secreting vaccine but not in mice vaccinated with untransfected, irradiated M-3 cells. We therefore propose that the antigen-presenting cells, which invade the vaccination site, process tumor-derived antigens and, subsequently, initiate priming of tumor-specific T lymphocytes in lymphoid organs. These findings suggest a three-stage process for the generation of effector T cells after vaccination with IL-2-secreting tumor cells: (i) tumor-antigen uptake and processing at the site of injection by antigen-presenting cells, (ii) migration of antigen-presenting cells into the regional draining lymph nodes, where T-cell priming occurs, and (iii) circulation of activated T cells that either perform or initiate effector mechanisms leading to tumor cell destruction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To determine whether T-cell-receptor (TCR) usage by T cells recognizing a defined human tumor antigen in the context of the same HLA molecule is conserved, we analyzed the TCR diversity of autologous HLA-A2-restricted cytotoxic T-lymphocyte (CTL) clones derived from five patients with metastatic melanoma and specific for the common melanoma antigen Melan-A/MART-1. These clones were first identified among HLA-A2-restricted anti-melanoma CTL clones by their ability to specifically release tumor necrosis factor in response to HLA-A2.1+ COS-7 cells expressing this tumor antigen. A PCR with variable (V)-region gene subfamily-specific primers was performed on cDNA from each clone followed by DNA sequencing. TCRAV2S1 was the predominant alpha-chain V region, being transcribed in 6 out of 9 Melan-A/MART-1-specific CTL clones obtained from the five patients. beta-chain V-region usage was also restricted, with either TCRBV14 or TCRBV7 expressed by all but one clone. In addition, a conserved TCRAV2S1/TCRBV14 combination was expressed in four CTL clones from three patients. None of these V-region genes was found in a group of four HLA-A2-restricted CTL clones recognizing different antigens (e.g., tyrosinase) on the autologous tumor. TCR joining regions were heterogeneous, although conserved structural features were observed in the complementarity-determining region 3 sequences. These results indicate that a selective repertoire of TCR genes is used in anti-melanoma responses when the response is narrowed to major histocompatibility complex-restricted antigen-specific interactions.