959 resultados para transverse shear
Resumo:
Despite the frequent use of stepping motors in robotics, automation, and a variety of precision instruments, they can hardly be found in rotational viscometers. This paper proposes the use of a stepping motor to drive a conventional constant-shear-rate laboratory rotational viscometer to avoid the use of velocity sensor and gearbox and, thus, simplify the instrument design. To investigate this driving technique, a commercial rotating viscometer has been adapted to be driven by a bipolar stepping motor, which is controlled via a personal computer. Special circuitry has been added to microstep the stepping motor at selectable step sizes and to condition the torque signal. Tests have been carried out using the prototype to produce flow curves for two standard Newtonian fluids (920 and 12 560 mPa (.) s, both at 25 degrees C). The flow curves have been obtained by employing several distinct microstep sizes within the shear rate range of 50-500 s(-1). The results indicate the feasibility of the proposed driving technique.
Resumo:
This paper analyzes the punching strength of concrete flat slabs with shear reinforcement that does not embrace flexural reinforcement. This paper also reports the results of tests of slabs without shear reinforcement. Finally, this paper shows some comparisons of tests of similar slabs without shear reinforcement and slabs with different types of shear reinforcement. The obtained results show that the use of shear reinforcement elements without embracement in the flexural reinforcement improves the punching strength of reinforced concrete flat slabs.
Resumo:
The effect of varying the geometric parameters of helical strakes on vortex-induced vibration (VIV) is investigated in this paper. The degree of oscillation attenuation or even suppression is analysed for isolated circular cylinder cases. How a cylinder fitted with strakes behaves when immersed in the wake of another cylinder in tandem arrangement is also investigated and these results are compared to those with a single straked cylinder. The experimental tests are conducted at a circulating water channel facility and the cylindrical models are mounted on a low-damping air bearing elastic base with one degree-of-freedom, restricted to oscillate in the transverse direction to the channel flow. Three strake pitches (p) and heights (h) are tested: p = 5, 10, 15d, and h = 0.1, 0.2, 0.25d. The mass ratio is 1.8 for all models. The Reynolds number range is from 1000 to 10000, and the reduced velocity varies up to 21. The cases with h = 0.1d strakes reduce the amplitude response when compared to the isolated plain cylinder, however the oscillation still persists. On the other hand, the cases with h = 0.2, 0.25d strakes almost completely suppress VIV. Spanwise vorticity fields, obtained through stereoscopic digital particle image velocimetry (SDPIV), show an alternating vortex wake for the p = 10d and h = 0.1d straked cylinder. The p = 10d and h = 0.2d cylinder wake has separated shear layers with constant width and no roll-up close to the body. The strakes do not increase the magnitude of the out-of-plane velocity compared to the isolated plain cylinder. However, they deflect the flow in the out-of-plane direction in a controlled way, which can prevent the vortex shedding correlation along the span. In order to investigate the wake interference effect on the strake efficiency, an experimental arrangement with two cylinders in tandem is employed. The centre-to-centre distance for the tandem arrangement varies from 2 to 6. When the downstream p = 10d and h = 0.2d cylinder is immersed in the wake of an upstream fixed plain cylinder, it loses its effectiveness compared with the isolated case. Although the oscillations have significant amplitude, they are limited, which is a different behaviour from that of a tandem configuration with two plain cylinders. For this particular case, the amplitude response monotonically increases for all gaps, except one, a trait usually found in galloping-like oscillations. SDPIV results for the tandem arrangements show alternating vortex shedding and oscillatory wake. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This investigative work is concerned with the flow around a circular cylinder submitted to forced transverse oscillations. The goal is to investigate how the transition to turbulence is initiated in the wake for cases with different Reynolds numbers (Re) and displacement amplitudes (A). For each Re the motion frequency is kept constant, close to the Strouhal number of the flow around a fixed cylinder at the same Re. Stability analysis of two-dimensional periodic flows around a forced-oscillating cylinder is carried out with respect to three-dimensional infinitesimal perturbations. The procedure consists of performing a Floquet type analysis of time-periodic base flows, computed using the spectral/hp element method. With the results of the Floquet calculations, considerations regarding the stability of the system are drawn, and the form of the instability at its onset is obtained. The critical Reynolds number is observed to change with the amplitude of oscillation. With respect to instabilities, unstable modes with the same symmetry as mode A of a fixed cylinder are observed; however, they present different wavelengths. Also, the instabilities observed for the oscillating cylinder are distinctively stronger in the braid shear layers. Other unstable modes similar to mode B are found. Quasi-periodic modes are observed in the 2S wake, and subharmonic mode occurrences are reported in P + S wakes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Real-time viscosity measurement remains a necessity for highly automated industry. To resolve this problem, many studies have been carried out using an ultrasonic shear wave reflectance method. This method is based on the determination of the complex reflection coefficient`s magnitude and phase at the solid-liquid interface. Although magnitude is a stable quantity and its measurement is relatively simple and precise, phase measurement is a difficult task because of strong temperature dependence. A simplified method that uses only the magnitude of the reflection coefficient and that is valid under the Newtonian regimen has been proposed by some authors, but the obtained viscosity values do not match conventional viscometry measurements. In this work, a mode conversion measurement cell was used to measure glycerin viscosity as a function of temperature (15 to 25 degrees C) and corn syrup-water mixtures as a function of concentration (70 to 100 wt% of corn syrup). Tests were carried out at 1 MHz. A novel signal processing technique that calculates the reflection coefficient magnitude in a frequency band, instead of a single frequency, was studied. The effects of the bandwidth on magnitude and viscosity were analyzed and the results were compared with the values predicted by the Newtonian liquid model. The frequency band technique improved the magnitude results. The obtained viscosity values came close to those measured by the rotational viscometer with percentage errors up to 14%, whereas errors up to 96% were found for the single frequency method.
Resumo:
Coaracy Nunes was the first hydroelectric power plant in the Amazon region, being located in Araguari River, Amapa State, Brazil. The plant operates since 1976, presenting now a nominal capacity of 78 MW. The shear pins, which are installed in the turbine hydraulic arms to control the wicket gate and regulate the water flow into the turbine blades, suffered several breakdowns since 2004. These shear pins are made of an ASTM 410 stainless steel and were designed to break by a shear overload of 120 kN. Fractographic investigation of the pins, however, revealed two types of fracture topographies: a region of stable crack propagation area, with non-pronounced striation and secondary cracks; and a region of unstable propagation, featuring elongated dimples. These results indicated that the stable crack propagation occurred by fatigue (bidirectional bending), which was nucleated at machining marks under high nominal load. Finite element analysis was carried out using two loading conditions (pure shear and a combination of shear and bending) and the results indicated that the presence of a bending stress strongly increased the stress concentration factor (85% rise in the shear stress and 130% rise in the Von Mises stress). Misalignment during shear pins assembly associated with vibration might have promoted the premature failure of the shear by bending fatigue. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The paper presents a number of numerical simulations of the transverse vibrations of two (or one) imbalanced rotors forced by an electric motor with limited power supply, during the passage through of the two resonance zones (increasing and decreasing input voltages). The predominant presence of the Sommerfeld effect. when the rotational velocity of the motor is captured, in the second resonance frequency is demonstrated. We have shown that the hysteretic jump phenomenon exists in a rotor system with two (or one) disks, and with this, we have shown that a torque is influenced by the dynamical behavior of die rotor [DOI: 10.1115/1.3007979]
Resumo:
A novel shear plate was used to make direct bed shear stress measurements in laboratory dam break and swash flows on smooth, fixed, impermeable beds. The pressure gradient due to the slope of the fluid free-surface across the plate was measured using pressure transducers. Surface elevation was measured at five locations using acoustic displacement sensors. Flow velocity was measured using an Acoustic-Doppler Velocimeter and calculated using the ANUGA inundation model. The measured bed shear stress at the dam break fluid tip for an initially dry, horizontal bed was close to twice that estimated using steady flow theory. The temporal variation of swash bed shear stress showed a large peak in landward directed stress at the uprush tip, followed by a rapid decay throughout the uprush flow interior. The peak seaward directed stress during the backwash phase was less than half that measured in the uprush. Close to the still water line, in the region of bore collapse and at the time of initial uprush, favourable pressure gradients were measured. In the lower swash region predominately weak adverse pressure gradients were measured.
Resumo:
In an open channel, a hydraulic jump is the rapid transition from super- to sub-critical flow associated with strong turbulence and air bubble entrainment in the mixing layer. New experiments were performed at relatively large Reynolds numbers using phase-detection probes. Some new signal analysis provided characteristic air-water time and length scales of the vortical structures advecting the air bubbles in the developing shear flow. An analysis of the longitudinal air-water flow structure suggested little bubble clustering in the mixing layer, although an interparticle arrival time analysis showed some preferential bubble clustering for small bubbles with chord times below 3 ms. Correlation analyses yielded longitudinal air-water time scales Txx*V1/d1 of about 0.8 in average. The transverse integral length scale Z/d1 of the eddies advecting entrained bubbles was typically between 0.25 and 0.4, irrespective of the inflow conditions within the range of the investigations. Overall the findings highlighted the complicated nature of the air-water flow
Resumo:
Discrete element method (DEM) modeling is used in parallel with a model for coalescence of deformable surface wet granules. This produces a method capable of predicting both collision rates and coalescence efficiencies for use in derivation of an overall coalescence kernel. These coalescence kernels can then be used in computationally efficient meso-scale models such as population balance equation (PBE) models. A soft-sphere DEM model using periodic boundary conditions and a unique boxing scheme was utilized to simulate particle flow inside a high-shear mixer. Analysis of the simulation results provided collision frequency, aggregation frequency, kinetic energy, coalescence efficiency and compaction rates for the granulation process. This information can be used to bridge the gap in multi-scale modeling of granulation processes between the micro-scale DEM/coalescence modeling approach and a meso-scale PBE modeling approach.
Resumo:
We investigate the effect of coexisting transverse modes on the operation of self-mixing sensors based on vertical-cavity surface-emitting lasers (VCSELs). The effect of multiple transverse modes on the measurement of displacement and distance were examined by simulation and in laboratory experiment. The simulation model shows that the periodic change in the shape and magnitude of the self-mixing signal with modulation current can be properly explained by the different frequency-modulation coefficients of the respective transverse modes in VCSELs. The simulation results are in excellent agreement with measurements performed on single-mode and multimode VCSELs and on self-mixing sensors based on these VCSELs.
Resumo:
A hydraulic jump is the transition from a supercritical open channel flow to a subcritical regime. It is characterised by a highly turbulent flow with macro-scale vortices, some kinetic energy dissipation and a bubbly two-phase flow structure. New air-water flow measurements were performed in hydraulic jump flows for a range of inflow Froude numbers. The experiments were conducted in a large-size facility using two types of phase-detection intrusive probes: i.e., single-tip and double-tip conductivity probes. These were complemented by some measurements of free-surface fluctuations using ultrasonic displacement meters. The present study was focused on the turbulence characteristics of hydraulic jumps with partially-developed inflow conditions. The void fraction measurements showed the presence of an advective diffusion shear layer in which the void fractions profiles matched closely an analytical solution of the advective diffusion equation for air bubbles. The present results highlighted some influence of the inflow Froude number onto the air bubble entrainment process. At the largest Froude numbers, the advected air bubbles were more thoroughly dispersed vertically, and larger amount of air bubbles were detected in the turbulent shear layer. In the air-water mixing layer, the maximum void fraction and bubble count rate data showed some longitudinal decay function in the flow direction. Such trends were previously reported in the literature. The measurements of interfacial velocity and turbulence level distributions provided new information on the turbulent velocity field in the highly-aerated shear region. The present data suggested some longitudinal decay of the turbulence intensity. The velocity profiles tended to follow a wall jet flow pattern. The air–water turbulent time and length scales were deduced from some auto- and cross-correlation analyses based upon the method of CHANSON (2006,2007). The results provided the integral turbulent time and length scales of the eddy structures advecting the air bubbles in the developing shear layer. The experimental data showed that the auto-correlation time scale Txx was larger than the transverse cross-correlation time scale Txz. The integral turbulence length scale Lxz was a function of the inflow conditions, of the streamwise position (x-x1)/d1 and vertical elevation y/d1. Herein the dimensionless integral turbulent length scale Lxz/d1 was closely related to the inflow depth: i.e., Lxz/d1 = 0.2 to 0.8, with Lxz increasing towards the free-surface. The free-surface fluctuations measurements showed large turbulent fluctuations that reflected the dynamic, unsteady structure of the hydraulic jumps. A linear relationship was found between the normalized maximum free-surface fluctuation and the inflow Froude number.
Resumo:
A simple design process for the design of elliptical cross-section, transverse gradient coils for use in magnetic resonance imaging (MRI) is presented. This process is based on a flexible stochastic optimization method and results in designs of high linearity and efficiency with low switching times. A design study of a shielded, transverse asymmetric elliptical coil set for use in neural imaging is presented and includes the minimization of the torques experienced by the gradient set.
Resumo:
Mechanically skinned skeletal muscle fibres from rat and toad were exposed to the permeabilizing agents beta-escin and saponin. The effects of these agents on the sealed transverse tubular system (t-system) and sarcoplasmic reticulum (SR) were examined by looking at changes in the magnitude of the force responses to t-system depolarization, the time course of the fluorescence of fura-2 trapped in the sealed t-system, and changes in the magnitude of caffeine-induced contractures following SR loading with Ca2+ under defined conditions. In the presence of 2 mu g ml(-1) beta-escin and saponin, the response to t-system depolarization was not completely abolished, decreasing to a plateau, and a large proportion of fura-2 remained in the sealed t-system. At 10 mu g ml(-1), both agents abolished the ability of both rat and toad preparations to respond to t-system depolarization after 3 min of exposure, but a significant amount of fura-2 remained in sealed t-tubules even after exposure to 100 mu g ml(-1) beta-escin and saponin for 10 min. beta-Escin took longer than saponin to reduce the t-system depolarizations and fura-2 content of the sealed t-system to a similar level. The ability of the SR to load Ca2+ was reduced to a lower level after treatment with beta-escin than saponin. This direct effect on the SR occurred at much lower concentrations for rat (2 mu g ml(-1) beta-escin and 10 mu g ml(-1) saponin) than toad (10 mu g ml(-1) beta-escin and 150 mu g ml(-1) saponin). The reverse order in sensitivities to beta-escin and saponin of t-system and SR membranes indicates that the mechanisms of action of beta-escin and saponin are different in the two types of membrane. In conclusion, this study shows that: (1) beta-escin has a milder action on the surface membrane than saponin; (2) beta-escin is a more potent modifier of SR function; (3) simple permeabilization of membranes is not sufficient to explain the effects of beta-escin and saponin on muscle membranes; and (4) the t-system network within muscle fibres is not a homogeneous compartment.