561 resultados para transtensional tectonics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the natural evolution of a river–delta–sea system is important to develop a strong scientific basis for efficient integrated management plans. The distribution of sediment fluxes is linked with the natural connection between sediment source areas situated in uplifting mountain chains and deposition in plains, deltas and, ultimately, in the capturing oceans and seas. The Danube River–western Black Sea is one of the most active European systems in terms of sediment re-distribution that poses significant societal challenges. We aim to derive the tectonic and sedimentological background of human-induced changes in this system and discuss their interplay. This is obtained by analysing the tectonic and associated vertical movements, the evolution of relevant basins and the key events affecting sediment routing and deposition. The analysis of the main source and sink areas is focused in particular on the Miocene evolution of the Carpatho-Balkanides, Dinarides and their sedimentary basins including the western Black Sea. The vertical movements of mountains chains created the main moments of basin connectivity observed in the Danube system. Their timing and effects are observed in sediments deposited in the vicinity of gateways, such as the transition between the Pannonian/Transylvanian and Dacian basins and between the Dacian Basin and western Black Sea. The results demonstrate the importance of understanding threshold conditions driving rapid basins connectivity changes superposed over the longer time scale of tectonic-induced vertical movements associated with background erosion and sedimentation. The spatial and temporal scale of such processes is contrastingly different and challenging. The long-term patterns interact with recent or anthropogenic induced modifications in the natural system and may result in rapid changes at threshold conditions that can be quantified and predicted. Their understanding is critical because of frequent occurrence during orogenic evolution, as commonly observed in the Mediterranean area and discussed elsewhere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subduction of a narrow slab of oceanic lithosphere beneath a tightly curved orogenic arc requires the presence of at least one lithospheric scale tear fault. While the Calabrian subduction beneath southern Italy is considered to be the type example of this geodynamic setting, the geometry, kinematics and surface expression of the associated lateral, slab tear fault offshore eastern Sicily remain controversial. Results from a new marine geophysical survey conducted in the Ionian Sea, using high-resolution bathymetry and seismic profiling reveal active faulting at the seafloor within a 140 km long, two-branched fault system near Alfeo Seamount. The previously unidentified 60 km long NW trending North Alfeo Fault system shows primarily strike-slip kinematics as indicated by the morphology and steep-dipping transpressional and transtensional faults. Available earthquake focal mechanisms indicate dextral strike-slip motion along this fault segment. The 80 km long SSE trending South Alfeo fault system is expressed by one or two steeply dipping normal faults, bounding the western side of a 500+ m thick, 5 km wide, elongate, syntectonic Plio-Quaternary sedimentary basin. Both branches of the fault system are mechanically capable of generating magnitude 6-7 earthquakes like those that struck eastern Sicily in 1169, 1542, and 1693.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Late Cretaceous to Modern tectonic evolution of central and eastern California has been studied for many decades, with published work generally focusing on specific geographic areas and time periods. The resulting literature leaves the reader, whether graduate student, faculty member, or layperson, wondering what a coherently integrated tectonic evolution might look like, or if it would be at all possible to undertake such a task. This question is the common thread weaving together the four studies presented in this work. Each of the individual chapters is targeted at a specific location and time period which I have identified as a critical yet missing link in piecing together a coherent regional tectonic story. In the first chapter, we re-discover a set of major west down normal faults running along the western slope of the southern Sierra, the western Sierra fault system (WSFS). We show that one of these faults was offset by roughly a kilometer in Eocene time, and that this activity directly resulted in the incision of much of the relief present in modern Kings Canyon. The second chapter is a basement landscape and thermochronometric study of the hanging wall of the WSFS. New data from this study area provide a significant westward expansion of basement thermochronometric data from the southern Sierra Nevada batholith. Thermal modeling results of these data provide critical new constraints on the early exhumation of the Sierra Nevada batholith, and in the context of the results from Chapter I, allow us to piece together a coherent chronology of tectonic forcings and landscape evolution for the southern Sierra Nevada. In the third chapter, I present a study of the surface rupture of the 1999 Hector Mine earthquake, a dextral strike slip event on a fault in the Eastern California Shear Zone (ECSZ). New constraints on the active tectonics in ECSZ will help future studies better resolve the enigmatic mismatch between geologic slip rates and geodetically determined regional rates. Chapter IV is a magnetostratigraphic pilot study of the Paleocene Goler Formation. This study provides strong evidence that continued investigation will yield new constraints on the depositional age of the only fossil-bearing Paleocene terrestrial deposit on the west coast of North America. Each of these studies aims to provide important new data at critical missing links in the tectonic evolution of central and eastern California.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The continual eruptive activity, occurrence of an ancestral catastrophic collapse, and inherent geologic features of Pacaya volcano (Guatemala) demands an evaluation of potential collapse hazards. This thesis merges techniques in the field and laboratory for a better rock mass characterization of volcanic slopes and slope stability evaluation. New field geological, structural, rock mechanical and geotechnical data on Pacaya is reported and is integrated with laboratory tests to better define the physical-mechanical rock mass properties. Additionally, this data is used in numerical models for the quantitative evaluation of lateral instability of large sector collapses and shallow landslides. Regional tectonics and local structures indicate that the local stress regime is transtensional, with an ENE-WSW sigma 3 stress component. Aligned features trending NNW-SSE can be considered as an expression of this weakness zone that favors magma upwelling to the surface. Numerical modeling suggests that a large-scale collapse could be triggered by reasonable ranges of magma pressure (greater than or equal to 7.7 MPa if constant along a central dyke) and seismic acceleration (greater than or equal to 460 cm/s2), and that a layer of pyroclastic deposits beneath the edifice could have been a factor which controlled the ancestral collapse. Finally, the formation of shear cracks within zones of maximum shear strain could provide conduits for lateral flow, which would account for long lava flows erupted at lower elevations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The late Paleozoic collision between Gondwana and Laurussia resulted in the polyphase deformation and magmatism that characterizes the Iberian Massif of the Variscan orogen. In the Central Iberian Zone, initial con- tinental thickening (D1; folding and thrusting) was followed by extensional orogenic collapse (D2) responsible for the exhumation of high-grade rocks coeval to the emplacement of granitoids. This study presents a tectonometamorphic analysis of the Trancoso-Pinhel region (Central Iberian Zone) to ex- plain the processes in place during the transition froman extension-dominated state (D2) to a compression-dom- inated one (D3).Wereveal the existence of low-dipping D2 extensional structures later affected by several pulses of subhorizontal shortening, each of them typified by upright folds and strike-slip shearing (D3, D4 and D5, as identified by superimposition of structures). The D2 Pinhel extensional shear zone separates a low-grade domain from an underlying high-grade domain, and it contributed to the thermal reequilibration of the orogen by facil- itating heat advection from lower parts of the crust, crustal thinning, decompression melting, and magma intru- sion. Progressive lessening of the gravitational disequilibrium carried out by this D2 shear zone led to a switch from subhorizontal extension to compression and the eventual cessation and capture of the Pinhel shear zone by strike-slip tectonics during renewed crustal shortening. High-grade domains of the Pinhel shear zone were folded together with low-grade domains to define the current upright folded structure of the Trancoso-Pinhel re- gion, the D3 Tamames-Marofa-Sátão synform. Newdating of syn-orogenic granitoids (SHRIMP U\\Pb zircon dat- ing) intruding the Pinhel shear zone, together with the already published ages of early extensional fabrics constrain the functioning of this shear zone to ca. 331–311 Ma, with maximum tectonomagmatic activity at ca. 321–317 Ma. The capture and apparent cessation of movement of the Pinhel shear zone occurred at ca. 317– 311 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In their correspondence, He and colleagues question our conclusion of little or no uplift preceding Emeishan volcanism that we reported in our letter1. Debate concerns the nature of the contact between the Maokou limestone and Emeishan volcanics, the depositional environment and volumetric significance of mafic hydromagmatic deposits (MHDs), and evidence for symmetrical domal thinning. MHDs in the Daqiao section are separated from the Maokou limestone by 100 m of subaerial basaltic lavas, but elsewhere MHDs — previously interpreted as basal conglomerates2, 3 — directly overlie the Maokou2, 3. MHDs thus feature strongly in basal sections of the Emeishan lava succession, as also recently shown4 elsewhere in the Emeishan. An irregular surface at the top of the Maokou limestone has been interpreted as an erosional unconformity2, 3, but clastic deposits presented as evidence of this erosion2, 3 are MHDs produced by explosive magma–water interaction1. A clear demonstration that this irregular top surface is an erosional truncation of limestone reef facies (slope/rim, flat, lagoonal) is currently lacking, but is critical because reefs and carbonate platforms show considerable natural relief of tens of metres. The persistent hot, wet climate since the Oligocene has produced well-developed weathering profiles on exposed Palaeozoic marine sedimentary sequences5, but weathering and karst relief of the uppermost Maokou limestone underlying the flood basalts have not been properly documented, nor shown to be of middle Permian age and immediately preceding emplacement of the large igneous province.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The New Hebrides Island Arc, an intra-oceanic island chain in the southwest Pacific, is formed by subduction of the Indo-Australian Plate beneath the Pacific Plate. The southern end of the New Hebrides Island Arc is an ideal location to study the magmatic and tectonic interaction of an emerging island arc as this part of the island chain is less than 3 million years old. A tectonically complex island arc, it exhibits a change in relative subduction rate from ~12cm/yr to 6 cm/yr before transitioning to a left-lateral strike slip zone at its southern end. Two submarine volcanic fields, Gemini-Oscostar and Volsmar, occur at this transition from normal arc subduction to sinistral strike slip movement. Multi-beam bathymetry and dredge samples collected during the 2004 CoTroVE cruise onboard the RV Southern Surveyor help define the relationship between magmatism and tectonics, and the source for these two submarine volcanic fields. Gemini-Oscostar volcanic field (GOVF), dominated by northwest-oriented normal faults, has mature polygenetic stratovolcanoes with evidence for explosive subaqueous eruptions and homogeneous monogenetic scoria cones. Volsmar volcanic field (VVF), located 30 km south of GOVF, exhibits a conjugate set of northwest and eastwest-oriented normal faults, with two polygenetic stratovolcanoes and numerous monogenetic scoria cones. A deep water caldera provides evidence for explosive eruptions at 1500m below sea level in the VVF. Both volcanic fields are dominated by low-K island arc tholeiites and basaltic andesites with calcalkalic andesite and dacite being found only in the GOVF. Geochemical signatures of both volcanic fields continue the along-arc trend of decreasing K2O with both volcanic fields being similar to the New Hebrides central chain lavas. Lavas from both fields display a slight depletion in high field strength elements and heavy rare earth elements, and slight enrichments in large-ion lithophile elements and light rare earth elements with respect to N-MORB mantle. Sr and Nd isotope data correlate with heavy rare earth and high field strength element data to show that both fields are derived from depleted mantle. Pb isotopes define Pacific MORB mantle sources and are consistent with isotopic variation along the New Hebrides Island Arc. Pb isotopes show no evidence for sediment contamination; the subduction component enrichment is therefore a slab-derived enrichment. There is a subtle spatial variation in source chemistry which sees a northerly trend of decreasing enrichment of slab-derived fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The volcanic succession on Montserrat provides an opportunity to examine the magmatic evolution of island arc volcanism over a ∼2.5 Ma period, extending from the andesites of the Silver Hills center, to the currently active Soufrière Hills volcano (February 2010). Here we present high-precision double-spike Pb isotope data, combined with trace element and Sr-Nd isotope data throughout this period of Montserrat's volcanic evolution. We demonstrate that each volcanic center; South Soufrière Hills, Soufrière Hills, Centre Hills and Silver Hills, can be clearly discriminated using trace element and isotopic parameters. Variations in these parameters suggest there have been systematic and episodic changes in the subduction input. The SSH center, in particular, has a greater slab fluid signature, as indicated by low Ce/Pb, but less sediment addition than the other volcanic centers, which have higher Th/Ce. Pb isotope data from Montserrat fall along two trends, the Silver Hills, Centre Hills and Soufrière Hills lie on a general trend of the Lesser Antilles volcanics, whereas SSH volcanics define a separate trend. The Soufrière Hills and SSH volcanic centers were erupted at approximately the same time, but retain distinctive isotopic signatures, suggesting that the SSH magmas have a different source to the other volcanic centers. We hypothesize that this rapid magmatic source change is controlled by the regional transtensional regime, which allowed the SSH magma to be extracted from a shallower source. The Pb isotopes indicate an interplay between subduction derived components and a MORB-like mantle wedge influenced by a Galapagos plume-like source.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Sudbury Basin is a non-cylindrical fold basin occupying the central portion of the Sudbury Impact Structure. The impact structure lends itself excellently to explore the structural evolution of continental crust containing a circular region of long-term weakness. In a series of scaled analogue experiments various model crustal configurations were shortened horizontally at a constant rate. In mechanically weakened crust, model basins formed that mimic several first-order structural characteristics of the Sudbury Basin: (1) asymmetric, non-cylindrical folding of the Basin, (2) structures indicating concentric shortening around lateral basin termini and (3) the presence of a zone of strain concentration near the hinge zones of model basins. Geometrically and kinematically this zone corresponds to the South Range Shear Zone of the Sudbury Basin. According to our experiments, this shear zone is a direct mechanical consequence of basin formation, rather than the result of thrusting following folding. Overall, the models highlight the structurally anomalous character of the Sudbury Basin within the Paleoproterozoic Eastern Penokean Orogen. In particular, our models suggest that the Basin formed by pure shear thickening of crust, whereas transpressive deformation prevailed elsewhere in the orogen. The model basin is deformed by thickening and non-cylindrical synformal buckling, while conjugate transpressive shear zones propagated away from its lateral tips. This is consistent with pure shear deformation of a weak circular inclusion in a strong matrix. The models suggest that the Sudbury Basin formed as a consequence of long-term weakening of the upper crust by meteorite impact.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cause of upper-crustal segmentation into rhomb-shaped, shear zone-bound domains associated with contractional sedimentary basins in hot, wide orogens is not well understood. Here we use scaled multilayered analogue experiments to investigate the role of an orogen-parallel crustal-strength gradient on the formation of such structures. We show that the aspect ratio and size of domains, the sinuous character and abundance of transpressional shear zones vary with the integrated mechanical strength of crust. Upper-crustal deformation patterns and the degree of strain localization in the experiments are controlled by the ratio between the brittle and ductile strength in the model crust as well as gradients in tectonic and buoyancy forces. The experimental results match the first-order kinematic and structural characteristics of the southern Central Andes and provide insight on the dynamics of underlying deformation patterns in hot, wide orogens.