301 resultados para transmissions


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Next generation wireless systems employ Orthogonal frequency division multiplexing (OFDM) physical layer owing to the high data rate transmissions that are possible without increase in bandwidth. While TCP performance has been extensively studied for interaction with link layer ARQ, little attention has been given to the interaction of TCP with MAC layer. In this work, we explore cross-layer interactions in an OFDM based wireless system, specifically focusing on channel-aware resource allocation strategies at the MAC layer and its impact on TCP congestion control. Both efficiency and fairness oriented MAC resource allocation strategies were designed for evaluating the performance of TCP. The former schemes try to exploit the channel diversity to maximize the system throughput, while the latter schemes try to provide a fair resource allocation over sufficiently long time duration. From a TCP goodput standpoint, we show that the class of MAC algorithms that incorporate a fairness metric and consider the backlog outperform the channel diversity exploiting schemes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a scenario in which a wireless sensor network is formed by randomly deploying n sensors to measure some spatial function over a field, with the objective of computing a function of the measurements and communicating it to an operator station. We restrict ourselves to the class of type-threshold functions (as defined in the work of Giridhar and Kumar, 2005), of which max, min, and indicator functions are important examples: our discussions are couched in terms of the max function. We view the problem as one of message-passing distributed computation over a geometric random graph. The network is assumed to be synchronous, and the sensors synchronously measure values and then collaborate to compute and deliver the function computed with these values to the operator station. Computation algorithms differ in (1) the communication topology assumed and (2) the messages that the nodes need to exchange in order to carry out the computation. The focus of our paper is to establish (in probability) scaling laws for the time and energy complexity of the distributed function computation over random wireless networks, under the assumption of centralized contention-free scheduling of packet transmissions. First, without any constraint on the computation algorithm, we establish scaling laws for the computation time and energy expenditure for one-time maximum computation. We show that for an optimal algorithm, the computation time and energy expenditure scale, respectively, as Theta(radicn/log n) and Theta(n) asymptotically as the number of sensors n rarr infin. Second, we analyze the performance of three specific computation algorithms that may be used in specific practical situations, namely, the tree algorithm, multihop transmission, and the Ripple algorithm (a type of gossip algorithm), and obtain scaling laws for the computation time and energy expenditure as n rarr infin. In particular, we show that the computation time for these algorithms scales as Theta(radicn/lo- g n), Theta(n), and Theta(radicn log n), respectively, whereas the energy expended scales as , Theta(n), Theta(radicn/log n), and Theta(radicn log n), respectively. Finally, simulation results are provided to show that our analysis indeed captures the correct scaling. The simulations also yield estimates of the constant multipliers in the scaling laws. Our analyses throughout assume a centralized optimal scheduler, and hence, our results can be viewed as providing bounds for the performance with practical distributed schedulers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stability of scheduled multiaccess communication with random coding and independent decoding of messages is investigated. The number of messages that may be scheduled for simultaneous transmission is limited to a given maximum value, and the channels from transmitters to receiver are quasistatic, flat, and have independent fades. Requests for message transmissions are assumed to arrive according to an i.i.d. arrival process. Then, we show the following: (1) in the limit of large message alphabet size, the stability region has an interference limited information-theoretic capacity interpretation, (2) state-independent scheduling policies achieve this asymptotic stability region, and (3) in the asymptotic limit corresponding to immediate access, the stability region for non-idling scheduling policies is shown to be identical irrespective of received signal powers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increased availability of high frequency data sets have led to important new insights in understanding of financial markets. The use of high frequency data is interesting and persuasive, since it can reveal new information that cannot be seen in lower data aggregation. This dissertation explores some of the many important issues connected with the use, analysis and application of high frequency data. These include the effects of intraday seasonal, the behaviour of time varying volatility, the information content of various market data, and the issue of inter market linkages utilizing high frequency 5 minute observations from major European and the U.S stock indices, namely DAX30 of Germany, CAC40 of France, SMI of Switzerland, FTSE100 of the UK and SP500 of the U.S. The first essay in the dissertation shows that there are remarkable similarities in the intraday behaviour of conditional volatility across European equity markets. Moreover, the U.S macroeconomic news announcements have significant cross border effect on both, European equity returns and volatilities. The second essay reports substantial intraday return and volatility linkages across European stock indices of the UK and Germany. This relationship appears virtually unchanged by the presence or absence of the U.S stock market. However, the return correlation among the U.K and German markets rises significantly following the U.S stock market opening, which could largely be described as a contemporaneous effect. The third essay sheds light on market microstructure issues in which traders and market makers learn from watching market data, and it is this learning process that leads to price adjustments. This study concludes that trading volume plays an important role in explaining international return and volatility transmissions. The examination concerning asymmetry reveals that the impact of the positive volume changes is larger on foreign stock market volatility than the negative changes. The fourth and the final essay documents number of regularities in the pattern of intraday return volatility, trading volume and bid-ask spreads. This study also reports a contemporaneous and positive relationship between the intraday return volatility, bid ask spread and unexpected trading volume. These results verify the role of trading volume and bid ask quotes as proxies for information arrival in producing contemporaneous and subsequent intraday return volatility. Moreover, asymmetric effect of trading volume on conditional volatility is also confirmed. Overall, this dissertation explores the role of information in explaining the intraday return and volatility dynamics in international stock markets. The process through which the information is incorporated in stock prices is central to all information-based models. The intraday data facilitates the investigation that how information gets incorporated into security prices as a result of the trading behavior of informed and uninformed traders. Thus high frequency data appears critical in enhancing our understanding of intraday behavior of various stock markets’ variables as it has important implications for market participants, regulators and academic researchers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop a multi-class discrete-time processor-sharing queueing model for scheduled message communication over a discrete memoryless degraded broadcast channel. The framework we consider here models both the random message arrivals and the subsequent reliable communication by suitably combining techniques from queueing theory and information theory. Requests for message transmissions are assumed to arrive according to i.i.d. arrival processes. Then, (i) we derive an outer bound to the stability region of message arrival rate vectors achievable by the class of stationary scheduling policies, (ii) we show for any message arrival rate vector that satisfies the outer bound, that there exists a stationary "state-independent" policy that results in a stable system for the corresponding message arrival processes, and (iii) under an asymptotic regime, we show that the stability region of information arrival rate vectors is the information-theoretic capacity region of a degraded broadcast channel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

What happens when sexuality is banned from IAT public discourse? This book shows how everyday sexual behaviour and morality were — or were not — affected by the Soviet censorship on sexuality. Based on autobiographies written by ordinary people from St. Petersburg, it presents the loves and lives of three generations. It describes perceptions of love, the life course of the Russian family, transmissions of sexual knowledge, informal and illegal practices and contrasting subcultures. By posing the 'man question', Anna Rotkirch argues that the postsocialist transformation has centred on the Russian man. By contrast, one of the strongest continuities in the Russian gender system concerns the ways of mothering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Third-order nonlinear absorption and refraction coefficients of a few-layer boron carbon nitride (BCN) and reduced graphene oxide (RGO) suspensions have been measured at 3.2 eV in the femtosecond regime. Optical limiting behavior is exhibited by BCN as compared to saturable absorption in RGO. Nondegenerate time-resolved differential transmissions from BCN and RGO show different relaxation times. These differences in the optical nonlinearity and carrier dynamics are discussed in the light of semiconducting electronic band structure of BCN vis-a-vis the Dirac linear band structure of graphene. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a method to compute a probably approximately correct (PAC) normalized histogram of observations with a refresh rate of Theta(1) time units per histogram sample on a random geometric graph with noise-free links. The delay in computation is Theta(root n) time units. We further extend our approach to a network with noisy links. While the refresh rate remains Theta(1) time units per sample, the delay increases to Theta(root n log n). The number of transmissions in both cases is Theta(n) per histogram sample. The achieved Theta(1) refresh rate for PAC histogram computation is a significant improvement over the refresh rate of Theta(1/log n) for histogram computation in noiseless networks. We achieve this by operating in the supercritical thermodynamic regime where large pathways for communication build up, but the network may have more than one component. The largest component however will have an arbitrarily large fraction of nodes in order to enable approximate computation of the histogram to the desired level of accuracy. Operation in the supercritical thermodynamic regime also reduces energy consumption. A key step in the proof of our achievability result is the construction of a connected component having bounded degree and any desired fraction of nodes. This construction may also prove useful in other communication settings on the random geometric graph.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis studies optimisation problems related to modern large-scale distributed systems, such as wireless sensor networks and wireless ad-hoc networks. The concrete tasks that we use as motivating examples are the following: (i) maximising the lifetime of a battery-powered wireless sensor network, (ii) maximising the capacity of a wireless communication network, and (iii) minimising the number of sensors in a surveillance application. A sensor node consumes energy both when it is transmitting or forwarding data, and when it is performing measurements. Hence task (i), lifetime maximisation, can be approached from two different perspectives. First, we can seek for optimal data flows that make the most out of the energy resources available in the network; such optimisation problems are examples of so-called max-min linear programs. Second, we can conserve energy by putting redundant sensors into sleep mode; we arrive at the sleep scheduling problem, in which the objective is to find an optimal schedule that determines when each sensor node is asleep and when it is awake. In a wireless network simultaneous radio transmissions may interfere with each other. Task (ii), capacity maximisation, therefore gives rise to another scheduling problem, the activity scheduling problem, in which the objective is to find a minimum-length conflict-free schedule that satisfies the data transmission requirements of all wireless communication links. Task (iii), minimising the number of sensors, is related to the classical graph problem of finding a minimum dominating set. However, if we are not only interested in detecting an intruder but also locating the intruder, it is not sufficient to solve the dominating set problem; formulations such as minimum-size identifying codes and locating–dominating codes are more appropriate. This thesis presents approximation algorithms for each of these optimisation problems, i.e., for max-min linear programs, sleep scheduling, activity scheduling, identifying codes, and locating–dominating codes. Two complementary approaches are taken. The main focus is on local algorithms, which are constant-time distributed algorithms. The contributions include local approximation algorithms for max-min linear programs, sleep scheduling, and activity scheduling. In the case of max-min linear programs, tight upper and lower bounds are proved for the best possible approximation ratio that can be achieved by any local algorithm. The second approach is the study of centralised polynomial-time algorithms in local graphs – these are geometric graphs whose structure exhibits spatial locality. Among other contributions, it is shown that while identifying codes and locating–dominating codes are hard to approximate in general graphs, they admit a polynomial-time approximation scheme in local graphs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antenna selection (AS) provides most of the benefits of multiple-antenna systems at drastically reduced hardware costs. In receive AS, the receiver connects a dynamically selected subset of N available antennas to the L available RF chains. The "best" subset to be used for data reception is determined by means of channel estimates acquired using training sequences. Due to the nature of AS, the channel estimates at different antennas are obtained from different transmissions of the pilot sequence, and are, thus, outdated by different amounts in a time-varying channel. We show that a linear weighting of the estimates is optimum for the subset selection process, where the weights are related to the temporal correlation of the channel variations. When L is not an integer divisor of N, we highlight a new issue of "training voids", in which the last pilot transmission is not fully exploited by the receiver. We present a "void-filling" method for fully exploiting these voids, which essentially provides more accurate training for some antennas, and derive the optimal subset selection rule for any void-filling method. We also derive new closed-form equations for the performance of receive AS with optimal subset selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zero padded systems with linear receivers are shown to be robust and amenable to fast implementations in single antenna scenarios. In this paper, properties of such systems are investigated when multiple antennas are present at both ends of the communication link. In particular, their diversity and complexity are evaluated for precoded transmissions. The linear receivers are shown to exploit multipath and receive diversities, even in the absence of any coding at the transmitter. Use of additional redundancy to improve performance is considered and the effect of transmission rate on diversity order is analyzed. Low complexity implementations of Zero Forcing receivers are devised to further enhance their applicability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Receive antenna selection (AS) provides many benefits of multiple-antenna systems at drastically reduced hardware costs. In it, the receiver connects a dynamically selected subset of N available antennas to the L available RF chains. Due to the nature of AS, the channel estimates at different antennas, which are required to determine the best subset for data reception, are obtained from different transmissions of the pilot sequence. Consequently, they are outdated by different amounts in a time-varying channel. We show that a linear weighting of the estimates is necessary and optimum for the subset selection process, where the weights are related to the temporal correlation of the channel variations. When L is not an integer divisor of N , we highlight a new issue of ``training voids'', in which the last pilot transmission is not fully exploited by the receiver. We then present new ``void-filling'' methods that exploit these voids and greatly improve the performance of AS. The optimal subset selection rules with void-filling, in which different antennas turn out to have different numbers of estimates, are also explicitly characterized. Closed-form equations for the symbol error probability with and without void-filling are also developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wireless networks transmit information from a source to a destination via multiple hops in order to save energy and, thus, increase the lifetime of battery-operated nodes. The energy savings can be especially significant in cooperative transmission schemes, where several nodes cooperate during one hop to forward the information to the next node along a route to the destination. Finding the best multi-hop transmission policy in such a network which determines nodes that are involved in each hop, is a very important problem, but also a very difficult one especially when the physical wireless channel behavior is to be accounted for and exploited. We model the above optimization problem for randomly fading channels as a decentralized control problem – the channel observations available at each node define the information structure, while the control policy is defined by the power and phase of the signal transmitted by each node.In particular, we consider the problem of computing an energy-optimal cooperative transmission scheme in a wireless network for two different channel fading models: (i) slow fading channels, where the channel gains of the links remain the same for a large number of transmissions, and (ii) fast fading channels,where the channel gains of the links change quickly from one transmission to another. For slow fading, we consider a factored class of policies (corresponding to local cooperation between nodes), and show that the computation of an optimal policy in this class is equivalent to a shortest path computation on an induced graph, whose edge costs can be computed in a decentralized manner using only locally available channel state information(CSI). For fast fading, both CSI acquisition and data transmission consume energy. Hence, we need to jointly optimize over both these; we cast this optimization problem as a large stochastic optimization problem. We then jointly optimize over a set of CSI functions of the local channel states, and a corresponding factored class of control policies corresponding to local cooperation between nodes with a local outage constraint. The resulting optimal scheme in this class can again be computed efficiently in a decentralized manner. We demonstrate significant energy savings for both slow and fast fading channels through numerical simulations of randomly distributed networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In multiuser communication on the uplink, all subscribed users may not be active simultaneously. This leads to sparsity in the activity pattern in the users' transmissions, which can be exploited in the multiuser MIMO receiver at the base station (BS). Because of no transmissions from inactive users, joint detection at the BS has to consider an augmented signal set that includes zero. In this paper, we propose a receiver that exploits this inactivity-induced sparsity and considers the zero-augmented signal set. The proposed receiver is based on Markov Chain Monte Carlo techniques. Near-optimal performance and increased system capacity (in terms of number of users in the system) are demonstrated. For example, a multiuser MIMO system with N = 32 receive antennas at the BS and an user activity factor of 0.2 supports 51 uplink users meeting a QoS of 10(-3) coded bit error rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a cooperative system with an amplify-and-forward relay, the cascaded channel training protocol enables the destination to estimate the source-destination channel gain and the product of the source-relay (SR) and relay-destination (RD) channel gains using only two pilot transmissions from the source. Notably, the destination does not require a separate estimate of the SR channel. We develop a new expression for the symbol error probability (SEP) of AF relaying when imperfect channel state information (CSI) is acquired using the above training protocol. A tight SEP upper bound is also derived; it shows that full diversity is achieved, albeit at a high signal-to-noise ratio (SNR). Our analysis uses fewer simplifying assumptions, and leads to expressions that are accurate even at low SNRs and are different from those in the literature. For instance, it does not approximate the estimate of the product of SR and RD channel gains by the product of the estimates of the SR and RD channel gains. We show that cascaded channel estimation often outperforms a channel estimation protocol that incurs a greater training overhead by forwarding a quantized estimate of the SR channel gain to the destination. The extent of pilot power boosting, if allowed, that is required to improve performance is also quantified.