874 resultados para transcripts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hypothesized that specific muscular transcript level adaptations participate in the improvement of endurance performances following intermittent hypoxia training in endurance-trained subjects. Fifteen male high-level, long-distance runners integrated a modified living low-training high program comprising two weekly controlled training sessions performed at the second ventilatory threshold for 6 wk into their normal training schedule. The athletes were randomly assigned to either a normoxic (Nor) (inspired O2 fraction = 20.9%, n = 6) or a hypoxic group exercising under normobaric hypoxia (Hyp) (inspired O2 fraction = 14.5%, n = 9). Oxygen uptake and speed at second ventilatory threshold, maximal oxygen uptake (VO2 max), and time to exhaustion (Tlim) at constant load at VO2 max velocity in normoxia and muscular levels of selected mRNAs in biopsies were determined before and after training. VO2 max (+5%) and Tlim (+35%) increased specifically in the Hyp group. At the molecular level, mRNA concentrations of the hypoxia-inducible factor 1alpha (+104%), glucose transporter-4 (+32%), phosphofructokinase (+32%), peroxisome proliferator-activated receptor gamma coactivator 1alpha (+60%), citrate synthase (+28%), cytochrome oxidase 1 (+74%) and 4 (+36%), carbonic anhydrase-3 (+74%), and manganese superoxide dismutase (+44%) were significantly augmented in muscle after exercise training in Hyp only. Significant correlations were noted between muscular mRNA levels of monocarboxylate transporter-1, carbonic anhydrase-3, glucose transporter-4, and Tlim only in the group of athletes who trained in hypoxia (P < 0.05). Accordingly, the addition of short hypoxic stress to the regular endurance training protocol induces transcriptional adaptations in skeletal muscle of athletic subjects. Expressional adaptations involving redox regulation and glucose uptake are being recognized as a potential molecular pathway, resulting in improved endurance performance in hypoxia-trained subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Ornithine transcarbamylase (OTC) deficiency is the most common inborn error of urea metabolism that can lead to hyperammonemic crises and orotic aciduria. To date, a total of 341 causative mutations within the OTC gene have been described. However, in about 20% of the patients with enzymatically confirmed OTC deficiency no mutation can be detected when sequencing of genomic DNA analyzing exons and adjacent intronic segments of the OTC gene is performed. METHODS: Standard genomic DNA analysis of the OTC gene in five consecutive patients from five families revealed no mutation. Hence, liver tissue was obtained by needle sampling or open biopsy and RNA extracted from liver was analyzed. RESULTS: Complex rearrangements of the OTC transcript (three insertions and two deletions) were found in all five patients. CONCLUSION: In patients with a strong suspicion of OTC deficiency despite normal results of sequencing exonic regions of the OTC gene, characterization of liver OTC mRNA is highly effective in resolving the genotype. Liver tissue sampling by needle aspiration allows for both enzymatic analysis and RNA based diagnostics of OTC deficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite their crucial role in the nitrogen cycle, freshwater ecosystems are relatively rarely studied for active ammonia oxidizers (AO). This study of Lake Lucerne determined the abundance of both amoA genes and gene transcripts of ammonia-oxidizing archaea (AOA) and bacteria (AOB) over a period of 16 months, shedding more light on the role of both AO in a deep, alpine lake environment. At the surface, at 42 m water depth, and in the water layer immediately above the sediment, AOA generally outnumbered AOB. However, in the surface water during summer stratification, when both AO were low in abundance, AOB were more numerous than AOA. Temporal distribution patterns of AOA and AOB were comparable. Higher abundances of amoA gene transcripts were observed at the onset and end of summer stratification. In summer, archaeal amoA genes and transcripts correlated negatively with temperature and conductivity. Concentrations of ammonium and oxygen did not vary enough to explain the amoA gene and transcript dynamics. The observed herbivorous zooplankton may have caused a hidden flux of mineralized ammonium and a change in abundance of genes and transcripts. At the surface, AO might have been repressed during summer stratification due to nutrient limitation caused by active phytoplankton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Untreated AKR mice develop spontaneous thymic lymphomas by 6-12 months of age. Lymphoma development is accelerated when young mice are injected with the carcinogen N-methyl-N-nitrosourea (MNU). Selected molecular and cellular events were compared during the latent period preceding "spontaneous" (retrovirally-induced) and MNU-induced thymic lymphoma development in AKR mice. These studies were undertaken to test the hypothesis that thymic lymphomas induced in the same inbred mouse strain by endogenous retroviruses and by a chemical carcinogen develop by different mechanisms.^ Immunofluorescence analysis of differentiation antigens showed that most MNU-induced lymphomas express an immature CD4-8+ profile. In contrast, spontaneous lymphomas represent each of the major lymphocyte subsets. These data suggest involvement of different target populations in MNU-induced and spontaneous lymphomas. Analyses at intervals after MNU treatment revealed selective expansion of the CD4-8+ J11d+ thymocyte subset at 8-10 weeks post-MNU in 68% of the animals examined, suggesting that these cells are targets for MNU-induced lymphomagenesis. Untreated age-matched animals showed no selective expansion of thymocyte subsets.^ Previous data have shown that both spontaneous and MNU-induced lymphomas are monoclonal or oligoclonal. Distinct rearrangement patterns of the J$\sb2$ region of the T-cell receptor $\beta$-chain showed emergence of clonal thymocyte populations beginning at 6-7 weeks after MNU treatment. However, lymphocytes from untreated animals showed no evidence of clonal expansion at the time intervals investigated.^ Activation of c-myc frequently occurs during development of B- and T- cell lymphomas. Both spontaneous and MNU-induced lymphomas showed increased c-myc transcript levels. Increased c-myc transcription was first detected at 6 weeks post-MNU, and persisted throughout the latent period. However, untreated animals showed no increases in c-myc transcripts at the time intervals examined. Another nuclear oncogene, c-fos, did not display a similar change in RNA transcription during the latent period.^ These results supports the hypothesis that MNU-induced and spontaneous tumors develop by multi-step pathways which are distinct with respect to the target cell population affected. Clonal emergence and c-myc deregulation are important steps in the development of both MNU-induced and spontaneous tumors, but the onset of these events is later in spontaneous tumor development. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

16S rRNA genes and transcripts of Acidobacteria were investigated in 57 grassland and forest soils of three different geographic regions. Acidobacteria contributed 9-31% of bacterial 16S rRNA genes whereas the relative abundances of the respective transcripts were 4-16%. The specific cellular 16S rRNA content (determined as molar ratio of rRNA:rRNA genes) ranged between 3 and 80, indicating a low in situ growth rate. Correlations with flagellate numbers, vascular plant diversity and soil respiration suggest that biotic interactions are important determinants of Acidobacteria 16S rRNA transcript abundances in soils. While the phylogenetic composition of Acidobacteria differed significantly between grassland and forest soils, high throughput denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism fingerprinting detected 16S rRNA transcripts of most phylotypes in situ. Partial least squares regression suggested that chemical soil conditions such as pH, total nitrogen, C:N ratio, ammonia concentrations and total phosphorus affect the composition of this active fraction of Acidobacteria. Transcript abundance for individual Acidobacteria phylotypes was found to correlate with particular physicochemical (pH, temperature, nitrogen or phosphorus) and, most notably, biological parameters (respiration rates, abundances of ciliates or amoebae, vascular plant diversity), providing culture-independent evidence for a distinct niche specialization of different Acidobacteria even from the same subdivision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently described complex nature of some dehydrin-coding sequences in Trifolium repens could explain the considerable variability among transcripts originating from a single gene.1 For some of the sequences the existence of natural antisense transcripts (NAT s), which could form sense-antisense (SAS) pairs, was predicted. The present study demonstrates that cis-natural antisense transcripts of 2 dehydrin types (YnKn and YnSKn) accumulate in white clover plants subjected to treatments with polyethylene glycol (PEG), abscisic acid (ABA), and high salt concentration. The isolated YnKn cis-NAT s mapped to sequence site enriched in alternative start codons. Some of the sense-antisense pairs exhibited inverse expression with differing profiles which depended on the applied stress. A natural antisense transcript coding for an ABC F family protein (a trans-NAT) which shares short sequence homology with YnSKn dehydrin was identified in plants subjected to salt stress. Forthcoming experiments will evaluate the impact of NAT s on transcript abundances, elucidating the role of transcriptional and post-transcriptional interferences in the regulation of dehydrin levels under various abiotic stresses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximately 40% of patients who survive acute episodes of thrombotic thrombocytopenic purpura (TTP) associated with severe acquired ADAMTS13 deficiency experience one or more relapses. Risk factors for relapse other than severe ADAMTS13 deficiency and ADAMTS13 autoantibodies are unknown. ADAMTS13 autoantibodies, TTP episodes following infection or type I interferon treatment and reported ensuing systemic lupus erythematosus in some patients suggest immune dysregulation. This cross-sectional study asked whether autoantibodies against RNA-binding proteins or peripheral blood gene expression profiles measured during remission are associated with history of prior relapse in acquired ADAMTS13-deficient TTP. Peripheral blood from 38 well-characterized patients with autoimmune ADAMTS13-deficient TTP in remission was examined for autoantibodies and global gene expression. A subset of TTP patients (9 patients, 24%) exhibited a peripheral blood gene signature composed of elevated ribosomal transcripts that associated with prior relapse. A non-overlapping subset of TTP patients (9 patients, 24%) displayed a peripheral blood type I interferon gene signature that associated with autoantibodies to RNA-binding proteins but not with history of relapse. Patients who had relapsed bimodally expressed higher HLA transcript levels independently of ribosomal transcripts. Presence of any one potential risk factor (ribosomal gene signature, elevated HLA-DRB1, elevated HLA-DRB5) associated with relapse (OR = 38.4; p = 0.0002) more closely than any factor alone or all factors together. Levels of immune transcripts typical of natural killer (NK) and T lymphocytes positively correlated with ribosomal gene expression and number of prior episodes but not with time since the most recent episode. Flow cytometry confirmed elevated expression of cell surface markers encoded by these transcripts on T and/or NK cell subsets of patients who had relapsed. These data associate elevated ribosomal and immune transcripts with relapse history in acquired, ADAMTS13-deficient TTP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The parasitoid Chelonus inanitus (Braconidae, Hymenoptera) oviposits into eggs of Spodoptera littoralis (Noctuidae, Lepidoptera) and, along with the egg, also injects polydnaviruses and venom, which are prerequisites for successful parasitoid development. The parasitoid larva develops within the embryonic and larval stages of the host, which enters metamorphosis precociously and arrests development in the prepupal stage. Polydnaviruses are responsible for the developmental arrest and interfere with the host's endocrine system in the last larval instar. Polydnaviruses have a segmented genome and are transmitted as a provirus integrated in the wasp's genome. Virions are only formed in female wasps and no virus replication is seen in the parasitized host. Here it is shown that very small amounts of viral transcripts were found in parasitized eggs and early larval instars of S. littoralis. Later on, transcript quantities increased and were highest in the late last larval instar for two of the three viral segments tested and in the penultimate to early last larval instar for the third segment. These are the first data on the occurrence of viral transcripts in the host of an egg-larval parasitoid and they are different from data reported for hosts of larval parasitoids, where transcript levels are already high shortly after parasitization. The analysis of three open reading frames by RT-PCR revealed viral transcripts in parasitized S. littoralis and in female pupae of C. inanitus, indicating the absence of host specificity. For one open reading frame, transcripts were also seen in male pupae, suggesting transcription from integrated viral DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that degrades aberrant mRNAs harboring premature termination codons (PTCs). Two out of three T-cell receptor β (TCRβ) transcripts carry PTCs as a result of error-prone programmed rearrangements that occur at this locus during lymphocyte maturation. PTCs decrease TCRβ mRNA levels to a much greater extent than mRNAs transcribed from non-rearranging genes. This robust decrease in TCRβ mRNA levels is not a unique characteristic of the T-cell environment or the TCRβ promoter. The simplest explanation for this is that PTC-bearing TCRβ mRNAs elicit a stronger NMD response. An alternative explanation is NMD collaborates with another mechanism to dramatically decrease PTC-bearing TCRβ mRNA levels. ^ In my dissertation, I investigated the molecular mechanism behind the strong decrease in TCRβ mRNA levels triggered by PTCs. To determine the location of this response, I performed mRNA half-life analysis and found that PTCs elicited more rapid TCRβ mRNA decay in the nuclear fraction, not the cytoplasmic fraction. Although decay was restricted to the nuclear fraction, PTC-bearing TCRβ transcript levels were extremely low in the cytoplasm, a phenomenon that I named the nonsense-codon induced partitioning shift (NIPS). I established that NIPS shares several qualities with NMD, including its dependence on translation and NMD factors. Several lines of evidence suggested that NIPS results from PTCs eliciting retention of TCRβ transcripts in the nuclear fraction. This retention, as well as rapid TCRβ mRNA decay, most likely occurs in either the nucleoplasm or the outer nuclear membrane, based on analysis of nuclear and cytoplasmic markers in the highly purified nuclei I used for my studies. To further address the location of decay, I asked whether nuclear or cytoplasmic RNA decay factors mediated the destruction of PTC-bearing mRNAs. My results suggested that a nuclear component of the 3'-to-5' exosome, as well as an endonucleolytic activity, are involved in the destruction of PTC-containing TCRβ mRNAs. Individual endogenous NMD substrates had differential requirements for nuclear and cytoplasmic exonucleases. In summary, my results provide evidence that PTCs trigger multiple mechanisms involving multiple decay factors to remove and regulate mRNAs in mammalian cells. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Imprinted genes tend to occur in clusters. We have identified a cluster in distal mouse chromosome (Chr) 2, known from early genetic studies to contain both maternally and paternally imprinted, but unspecified, genes. Subsequently, one was identified as Gnas, which encodes a G protein α subunit, and there is clinical and biochemical evidence that the human homologue GNAS1, mutated in patients with Albright hereditary osteodystrophy, is also imprinted. We have used representational difference analysis, based on parent-of-origin methylation differences, to isolate candidate imprinted genes in distal Chr 2 and found two oppositely imprinted genes, Gnasxl and Nesp. Gnasxl determines a variant G protein α subunit associated with the trans-Golgi network and Nesp encodes a secreted protein of neuroendocrine tissues. Gnasxl is maternally methylated in genomic DNA and encodes a paternal-specific transcript, whereas Nesp is paternally methylated with maternal-specific expression. Their reciprocal imprinting may offer insight into the distal Chr 2 imprinting phenotypes. Remarkably, Gnasxl, Nesp, and Gnas are all part of the same transcription unit; transcripts for Gnasxl and Nesp are alternatively spliced onto exon 2 of Gnas. This demonstrates an imprinting mechanism in which two oppositely imprinted genes share the same downstream exons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have succeeded in constructing a stable full-length cDNA clone of strain H77 (genotype 1a) of hepatitis C virus (HCV). We devised a cassette vector with fixed 5′ and 3′ termini and constructed multiple full-length cDNA clones of H77 in a single step by cloning of the entire ORF, which was amplified by long reverse transcriptase–PCR, directly into this vector. The infectivity of two complete full-length cDNA clones was tested by the direct intrahepatic injection of a chimpanzee with RNA transcripts. However, we found no evidence for HCV replication. Sequence analysis of these and 16 additional full-length clones revealed that seven clones were defective for polyprotein synthesis, and the remaining nine clones had 6–28 amino acid mutations in the predicted polyprotein compared with the consensus sequence of H77. Next, we constructed a consensus chimera from four of the full-length cDNA clones with just two ligation steps. Injection of RNA transcripts from this consensus clone into the liver of a chimpanzee resulted in viral replication. The sequence of the virus recovered from the chimpanzee was identical to that of the injected RNA transcripts. This stable infectious molecular clone should be an important tool for developing a better understanding of the molecular biology and pathogenesis of HCV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histone mRNAs are naturally intronless and accumulate efficiently in the cytoplasm. To learn whether there are cis-acting sequences within histone genes that allow efficient cytoplasmic accumulation of RNAs, we made recombinant constructs in which sequences from the mouse H2a gene were cloned into a human β-globin cDNA. By using transient transfection and RNase protection analysis, we demonstrate here that a 100-bp sequence within the H2a coding region permits efficient cytoplasmic accumulation of the globin cDNA transcripts. We also show that this sequence appears to suppress splicing and can functionally replace Rev and the Rev-responsive element in the cytoplasmic accumulation of unspliced HIV-1-related mRNAs. Like the Rev-responsive element, this sequence acts in an orientation-dependent manner. We thus propose that the sequence identified here may be a member of the cis-acting elements that facilitate the cytoplasmic accumulation of naturally intronless gene transcripts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expansion of a CTG trinucleotide repeat in the 3′ untranslated region (UTR) of DMPK, the gene encoding myotonic dystrophy protein kinase, induces the dominantly inherited neuromuscular disorder myotonic dystrophy (DM). Transcripts containing the expanded trinucleotide are abundant in differentiated cultured myoblasts, and they are spliced and polyadenylylated normally. However, mutant transcripts never reach the cytoplasm in these nonmitotic cells; instead, they form stable clusters that are tightly linked to the nuclear matrix, which can prevent effective biochemical purification of these transcripts. In DM patients, reduced DMPK protein levels, consequent to nuclear retention of mutant transcripts, are probably a cause of disease development. Formation of nuclear foci is a novel mechanism for preventing transcript export and effecting a loss of gene function.