945 resultados para trans-cis isomerization
Resumo:
A defect in glucose sensing of the pancreatic beta-cells has been observed in several animal models of type II diabetes and has been correlated with a reduced gene expression of the glucose transporter type 2 (Glut2). In a transgenic mouse model, expression of Glut2 antisense RNA in pancreatic beta-cells has recently been shown to be associated with an impaired glucose-induced insulin secretion and the development of diabetes. To identify factors that may be involved in the specific decrease of Glut2 in the beta-cells of the diabetic animal, an attempt was made to localize the cis-elements and trans-acting factors involved in the control of Glut2 expression in the endocrine pancreas. It was demonstrated by transient transfection studies that only 338 base pairs (bp) of the murine Glut2 proximal promoter are needed for reporter gene expression in pancreatic islet-derived cell lines, whereas no activity was detected in nonpancreatic cells. Three cis-elements, GTI, GTII, and GTIII, have been identified by DNAse I footprinting and gel retardation experiments within these 338 bp. GTI and GTIII bind distinct but ubiquitously expressed trans-acting factors. On the other hand, nuclear proteins specifically expressed in pancreatic cell lines interact with GTII, and their relative abundance correlates with endogenous Glut2 expression. These GTII-binding factors correspond to nuclear proteins of 180 and 90 kilodaltons as defined by Southwestern analysis. The 180-kilodalton factor is present in pancreatic beta-cell lines but not in an alpha-cell line. Mutation of the GTI or GTIII cis-elements decreases transcriptional activity directed by the 338-bp promoter, whereas mutation of GTII increases gene transcription. Thus negative and positive regulatory sequences are identified within the proximal 338 bp of the GLUT2 promoter and may participate in the islet-specific expression of the gene by binding beta-cell specific trans-acting factors.
Resumo:
Cell surface receptors bind ligands expressed on other cells (in trans) in order to communicate with neighboring cells. However, an increasing number of cell surface receptors are found to also interact with ligands expressed on the same cell (in cis). These observations raise questions regarding the biological role of such cis interactions. Specifically, it is important to know whether cis and trans binding have distinct functional effects and, if so, how a single cell discriminates between interactions in cis versus trans. Further, what are the structural features that allow certain cell surface receptors to engage ligand both on the same as well as on an apposed cell membrane? Here, we summarize known examples of receptors that display cis-trans binding and discuss the emerging diversity of biological roles played by these unconventional two-way interactions, along with their structural basis.
Resumo:
We have studied the disassembly and assembly of two morphologically and functionally distinct parts of the Golgi complex, the cis/middle and trans cisterna/trans network compartments. For this purpose we have followed the redistribution of three cis/middle- (GMPc-1, GMPc-2, MG 160) and two trans- (GMPt-1 and GMPt-2) Golgi membrane proteins during and after treatment of normal rat kidney (NRK) cells with brefeldin A (BFA). BFA induced complete disassembly of the cis/middle- and trans-Golgi complex and translocation of GMPc and GMPt to the ER. Cells treated for short times (3 min) with BFA showed extensive disorganization of both cis/middle- and trans-Golgi complexes. However, complete disorganization of the trans part required much longer incubations with the drug. Upon removal of BFA the Golgi complex was reassembled by a process consisting of three steps: (a) exist of cis/middle proteins from the ER and their accumulation into vesicular structures scattered throughout the cytoplasm; (b) gradual relocation and accumulation of the trans proteins in the vesicles containing the cis/middle proteins; and (c) assembly of the cisternae, and reconstruction of the Golgi complex within an area located in the vicinity of the centrosome from which the ER was excluded. Reconstruction of the cis/middle-Golgi complex occurred under temperature conditions inhibitory of the reorganization of the trans-Golgi complex, and was dependent on microtubules. Reconstruction of the trans-Golgi complex, disrupted with nocodazole after selective fusion of the cis/middle-Golgi complex with the ER, occurred after the release of cis/middle-Golgi proteins from the ER and the assembly of the cis/middle cisternae.
Resumo:
The Ly49A NK cell receptor interacts with MHC class I (MHC-I) molecules on target cells and negatively regulates NK cell-mediated target cell lysis. We have recently shown that the MHC-I ligand-binding capacity of the Ly49A NK cell receptor is controlled by the NK cells' own MHC-I. To see whether this property was unique to Ly49A, we have investigated the binding of soluble MHC-I multimers to the Ly49 family receptors expressed in MHC-I-deficient and -sufficient C57BL/6 mice. In this study, we confirm the binding of classical MHC-I to the inhibitory Ly49A, C and I receptors, and demonstrate that detectable MHC-I binding to MHC-I-deficient NK cells is exclusively mediated by these three receptors. We did not detect significant multimer binding to stably transfected or NK cell-expressed Ly49D, E, F, G, and H receptors. Yet, we identified the more distantly related Ly49B and Ly49Q, which are not expressed by NK cells, as two novel MHC-I receptors in mice. Furthermore, we show using MHC-I-sufficient mice that the NK cells' own MHC-I significantly masks the Ly49A and Ly49C, but not the Ly49I receptor. Nevertheless, Ly49I was partly masked on transfected tumor cells, suggesting that the structure of Ly49I is compatible in principal with cis binding of MHC-I. Finally, masking of Ly49Q by cis MHC-I was minor, whereas masking of Ly49B was not detected. These data significantly extend the MHC-I specificity of Ly49 family receptors and show that the accessibility of most, but not all, MHC-I-binding Ly49 receptors is modulated by the expression of MHC-I in cis.
Resumo:
Beta-oxidation of the conjugated linoleic acid 9-cis,11-trans-octadecadienoic acid (rumenic acid) was analyzed in vivo in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanoate is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxyacyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The amount of polyhydroxyalkanaote synthesized from the degradation of rumenic acid was found to be similar to the amount synthesized from the degradation of 10-trans,12-cis-octadecadienoic acid, oleic acid or 10-cis-heptadecenoic acid. Furthermore, the degradation of 10-cis-heptadecenoic acid was found to be unaffected by the presence of rumenic acid in the media. Efficient degradation of rumenic acid was found to be independent of the Delta(3,5),Delta(2,4)-dienoyl-CoA isomerase but instead relied on the presence of Delta(3),Delta(2)-enoyl-CoA isomerase activity. The presence of the unsaturated monomer 3-hydroxydodecenoic acid in polyhydroxyalkanoate derived from rumenic acid degradation was found to be dependent on the presence of a Delta(3),Delta(2)-enoyl-CoA isomerase activity. Together, these data indicate that rumenic acid is mainly degraded in vivo in S. cerevisiae through a pathway requiring only the participation of the auxiliary enzymes Delta(3),Delta(2)-enoyl-CoA isomerase, along with the enzyme of the core beta-oxidation cycle.
Resumo:
Beta-oxidation of the conjugated linoleic acid 9-cis,11-trans-octadecadienoic acid (rumenic acid) was analyzed in vivo in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanoate is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxyacyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The amount of polyhydroxyalkanaote synthesized from the degradation of rumenic acid was found to be similar to the amount synthesized from the degradation of 10-trans,12-cis-octadecadienoic acid, oleic acid or 10-cis-heptadecenoic acid. Furthermore, the degradation of 10-cis-heptadecenoic acid was found to be unaffected by the presence of rumenic acid in the media. Efficient degradation of rumenic acid was found to be independent of the Delta(3,5),Delta(2,4)-dienoyl-CoA isomerase but instead relied on the presence of Delta(3),Delta(2)-enoyl-CoA isomerase activity. The presence of the unsaturated monomer 3-hydroxydodecenoic acid in polyhydroxyalkanoate derived from rumenic acid degradation was found to be dependent on the presence of a Delta(3),Delta(2)-enoyl-CoA isomerase activity. Together, these data indicate that rumenic acid is mainly degraded in vivo in S. cerevisiae through a pathway requiring only the participation of the auxiliary enzymes Delta(3),Delta(2)-enoyl-CoA isomerase, along with the enzyme of the core beta-oxidation cycle.
Resumo:
Azole resistance in Candida albicans can be mediated by the upregulation of the ATP binding cassette transporter genes CDR1 and CDR2. Both genes are regulated by a cis-acting element called the drug-responsive element (DRE), with the consensus sequence 5'-CGGAWATCGGATATTTTTTT-3', and the transcription factor Tac1p. In order to analyze in detail the DRE sequence necessary for the regulation of CDR1 and CDR2 and properties of TAC1 alleles, a one-hybrid system was designed. This system is based on a P((CDR2))-HIS3 reporter system in which complementation of histidine auxotrophy can be monitored by activation of the reporter system by CDR2-inducing drugs such as estradiol. Our results show that most of the modifications within the DRE, but especially at the level of CGG triplets, strongly reduce CDR2 expression. The CDR2 DRE was replaced by putative DREs deduced from promoters of coregulated genes (CDR1, RTA3, and IFU5). Surprisingly, even if Tac1p was able to bind these putative DREs, as shown by chromatin immunoprecipitation, those from RTA3 and IFU5 did not functionally replace the CDR2 DRE. The one-hybrid system was also used for the identification of gain-of-function (GOF) mutations either in TAC1 alleles from clinical C. albicans isolates or inserted in TAC1 wild-type alleles by random mutagenesis. In all, 17 different GOF mutations were identified at 13 distinct positions. Five of them (G980E, N972D, A736V, T225A, and N977D) have already been described in clinical isolates, and four others (G980W, A736T, N972S, and N972I) occurred at already-described positions, thus suggesting that GOF mutations can occur in a limited number of positions in Tac1p. In conclusion, the one-hybrid system developed here is rapid and powerful and can be used for characterization of cis- and trans-acting elements in C. albicans.
Resumo:
We have previously shown that transcription from the vaccinia virus 7.5K early promoter is reactivated late in infection (J. Garcés, K. Masternak, B. Kunz, and R. Wittek, J. Virol. 67:5394-5401, 1993). To identify the sequence elements mediating reactivation, we constructed recombinant viruses harboring deletions, substitutions, or insertions in the 7.5K promoter or its flanking regions. The analysis of these viruses showed that sequences both upstream as well as downstream of the transcription initiation site contribute to reactivation of the 7.5K promoter. We tested whether reactivation could be explained by a high affinity of vaccinia virus early transcription factor to reactivated promoters. Bandshift experiments using purified protein showed that promoters which bind the factor with high affinity in general also have high early transcriptional activity. However, no correlation was found between affinity of the factor and reactivation. Interestingly, overexpression of recombinant early transcription factor in vaccinia virus-infected cells resulted in a shutdown of late transcription and in reactivation of promoters, which are normally not reactivated.
Resumo:
Vitellogenin genes are expressed under strict estrogen control in the liver of female oviparous vertebrates. Gene transfer experiments using estrogen-responsive cells have shown that the 13 bp perfect palindromic element GGTCACTGTGACC found upstream of the Xenopus laevis vitellogenin gene A2 promoter mediates hormonal stimulation and thus, was called the estrogen-responsive element (ERE). In the Xenopus vitellogenin genes B1 and B2 there are two closely adjacent EREs with one or more base substitutions when compared to the consensus ERE GGTCANNNTGACC. On their own, these degenerated elements have only a low or no regulatory capacity at all but act together synergistically to form an estrogen-responsive unit (ERU) with the same strength as the perfect palindromic 13 bp element. Analysis of estrogen receptor binding to the gene B1 ERU revealed a cooperative interaction of receptor dimers to the two adjacent imperfect EREs which most likely explains the synergistic stimulation observed in vivo. Furthermore, a promoter activator element located between positions --113 and --42 of the gene B1 and functional in the human MCF-7 and the Xenopus B3.2 cells has been identified and shown to be involved in the high level of induced transcription activity when the ERE is placed at a distance from the promoter. Finally, a hormone-controlled in vitro transcription system derived from Xenopus liver nuclear extracts was exploited to characterize two additional novel cis-acting elements within the vitellogenin gene B1 promoter. One of them, a negative regulatory element (NRE), is responsible for repression of promoter activity in the absence of hormone. The second is related to the NF-I binding site and is required, together with the ERE, to mediate hormonal induction. Moreover, we detected three trans-acting activities in Xenopus liver nuclear extracts that interact with these regions and demonstrated that they participate in the regulation of the expression of the vitellogenin promoter in vitro.
Resumo:
A RP-HPLC procedure for the simultaneous determination of cisplatin and the complex cis,cis,trans-diamminedichlorodihydroxo-platinum(IV), was development. The developed procedure was validated in terms of linearity, accuracy, precision, limits of detection (LOD), limits of quantification (LOQ) and specificity. The limits of detection (LOD) were 0.47 x 10-4 and 0.53 x 10-4 mol L-1 and the limits of quantification (LOQ) were 1.57 x 10-4 and 1.75 x 10-4 mol L-1, for cisplatin and cis,cis,trans-diamminedichlorodihydroxopla-tinum(IV), respectively. The average recoveries of cisplatin and cis,cis,trans-diamminedichlorodihydroxoplatinum(IV) was 100.6% ± 1.4 and 101.2% ± 1.1, respectively. Intermediate (inter-day) precision, repeatability and specificity of the procedure for hydrolysis products of cisplatin were studied. The results of the study showed that the proposed RP-HPLC procedure is simple, rapid, precise, accurate and specific.
Resumo:
Potential energy surface (PES) of cis-trans and trans-trans formic acid dimers were sampled using a stochastic method, and the geometries, energies, and vibrational frequencies were computed at B3LYP/6-311++G(3df,2p) level of theory. The results show that molar free energy of dimerization deviated up to 108.4% when basis set superposition error (BSSE) and zero-point energy (ZPE) were not considered. For cis-trans dimers, C=O and O - H bond weakened, whereas C - O bonds strengthened due to dimerization. Also, trans-trans FA dimers did not show a trend regarding strengthening or weakening of the C=O, O - H and C - O bonds.
Resumo:
Com o objetivo de verificar alterações estruturais nos isômeros todo-trans, 9- e 13-cis do beta-caroteno foi realizado um ensaio biológico baseado no modelo de esgotamento das reservas hepáticas de carotenóides em ratos. Animais depletados desses carotenóides receberam, durante quinze dias, os isômeros puros todo-trans, 9-cis e 13-cis do beta-caroteno. Ao final deste período, verificou-se a ocorrência de re-isomerização in vivo desses isômeros, a partir da quantificação dos mesmos depositados no fígado dos animais. Foi observada re-isomerização do 9-cis em todo-trans, do todo-trans em 9-cis, do 13-cis em 9-cis e todo-trans. O 13-cis foi mais susceptível à isomerização que o 9-cis, pois este último passou a todo-trans e nunca a 13-cis. Já o 13-cis, tanto pode se transformar em 9-cis quanto em todo-trans.
Resumo:
(A) Most azobenzene-based photoswitches require UV light for photoisomerization, which limit their applications in biological systems due to possible photodamage. Cyclic azobenzene derivatives, on the other hand, can undergo cis-trans isomerization when exposed to visible light. A shortened synthetic scheme was developed for the preparation of a building block containing cyclic azobenzene and D-threoninol (cAB-Thr). trans-Cyclic azobenzene was found to thermally isomerize back to the cis-form in a temperature-dependent manner. cAB-Thr was transformed into the corresponding phosphoramidite and subsequently incorporated into oligonucleotides by solid phase synthesis. Melting temperature measurement suggested that incorporation of cis-cAB into oligonucleotides destabilizes DNA duplexes, these findings corroborate with circular dichroism measurement. Finally, Fluorescent Energy Resonance Transfer experiments indicated that trans-cAB can be accommodated in DNA duplexes. (B) Inverse Electron Demand Diels-Alder reactions (IEDDA) between trans-olefins and tetrazines provide a powerful alternative to existing ligation chemistries due to its fast reaction rate, bioorthogonality and mutual orthogonality with other click reactions. In this project, an attempt was pursued to synthesize trans-cyclooctene building blocks for oligonucleotide labeling by reacting with BODIPY-tetrazine. Rel-(1R-4E-pR)-cyclooct-4-enol and rel-(1R,8S,9S,4E)-Bicyclo[6.1.0]non-4-ene-9-ylmethanol were synthesized and then transformed into the corresponding propargyl ether. Subsequent Sonogashira reactions between these propargylated compounds with DMT-protected 5-iododeoxyuridine failed to give the desired products. Finally a methodology was pursued for the synthesis of BODIPY-tetrazine conjugates that will be used in future IEDDA reactions with trans-cyclooctene modified oligonucleotides.
Resumo:
Tesis (Maestría en Ciencias en Nutrición) UANL, 2012.
Resumo:
Infrared spectra of the trans and the cis isomers of nitrous acid, both HONO and DONO, have been observed in the gas phase using a Fourier transform interferometer with a resolution of about 0.05 cm−1 from 4000 to 500 cm−1. Rotational analyses are reported on eleven of the fundamentals and some overtones.