952 resultados para trabecular bone


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To evaluate the influence of cyclosporin A (CsA) administration on bone around integrated dental implants assessed by a bone quality index and by quantitative subtraction radiography.A total of 36 machine surface commercial implants were placed in 18 adult rabbits. After a 3-month healing period without any disturbance, the animals were randomly divided into three groups of six animals each. Group A was sacrificed at this time. CsA was injected subcutaneously in an immunosuppressive dose of 10 mg/kg/day in a test group (Group T), and a Group B served as a control, receiving only vehicle. After 3 months of cyclosporin administration, the animals of both Groups B and T were sacrificed. Radiographs were obtained at implant surgery and at the day of sacrifice with a CMOS sensor. Bone quality around the implants was compared between the groups using a bone quality index and quantitative subtraction radiography.The bone analysis showed that in Group T, the bone quality changed dramatically from a dense cortical to a loose trabecular bone structure (P < 0.0001, chi(2) test) while in Groups A and B there were no significant differences. Quantitative digital subtraction radiography showed significantly (P < 0.05) lower gray shade values (radiographic density) in a region of bone formation around the implants in Group T (118 +/- 12) than in Groups A (161 +/- 6) and B (186 +/- 10).Within the limits of this study, CsA administration has a negative effect on the quality of bone around integrated dental implant.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The influence of daily energy doses of 0.03, 0.3 and 0.9 J of He-Ne laser irradiation on the repair of surgically produced tibia damage was investigated in Wistar rats. Laser treatment was initiated 24 h after the trauma and continued daily for 7 or 14 days in two groups of nine rats (n=3 per laser dose and period). Two control groups (n=9 each) with injured tibiae were used. The course of healing was monitored using morphometrical analysis of the trabecular area. The organization of collagen fibers in the bone matrix and the histology of the tissue were evaluated using Picrosirius-polarization method and Masson's trichrome. After 7 days, there was a significant increase in the area of neoformed trabeculae in tibiae irradiated with 0.3 and 0.9 J compared to the controls. At a daily dose of 0.9 J (15 min of irradiation per day) the 7-day group showed a significant increase in trabecular bone growth compared to the 14-day group. However, the laser irradiation at the daily dose of 0.3 J produced no significant decrease in the trabecular area of the 14-day group compared to the 7-day group, but there was significant increase in the trabecular area of the 15-day controls compared to the 8-day controls. Irradiation increased the number of hypertrophic osteoclasts compared to non-irradiated injured tibiae (controls) on days 8 and 15. The Picrosirius-polarization method revealed bands of parallel collagen fibers (parallel-fibered bone) at the repair site of 14-day-irradiated tibiae, regardless of the dose. This organization improved when compared to 7-day-irradiated tibiae and control tibiae. These results show that low-level laser therapy stimulated the growth of the trabecular area and the concomitant invasion of osteoclasts during the first week, and hastened the organization of matrix collagen (parallel alignment of the fibers) in a second phase not seen in control, non-irradiated tibiae at the same period. The active osteoclasts that invaded the regenerating site were probably responsible for the decrease in trabecular area by the fourteenth day of irradiation. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Movimentar ortodonticamente os dentes por áreas densas do trabeculado ósseo e pelas corticais pode requerer uma redução na intensidade e/ou na concentração das forças aplicadas. em parte, as forças ortodônticas aplicadas são dissipadas e reduzidas pela deflexão óssea que ocorre pelo discreto grau de elasticidade do tecido ósseo em condições de normalidade. Nas áreas de trabeculado denso e nas corticais, essa deflexão deve ser irrisória ou inexistente. Se não houver uma redução na intensidade das forças nessas regiões citadas, toda a força incidirá sobre a estrutura do ligamento periodontal, aumentando o risco de morte dos cementoblastos, hialinização e reabsorções radiculares. Novos trabalhos poderiam avaliar a prevalência dessas consequências em casuísticas selecionadas para essa finalidade, que, assim, deixariam de ser observações aleatórias.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: the aim of this study was to evaluate bone regeneration in bone cavities filled with particulate autogenous bone either harvest in blocks and subjected to milling procedures or collected during osteotomy with implant burs. Materials and Methods: In 12 rabbits, 3 noncritical unicortical cavities 7 mm in diameter were prepared with a trephine drill on the right tibia. The cavities were filled respectively with particulate autogenous bone achieved with a manual bone crusher ( particulate group), with particulate autogenous bone obtained using bone collector during osteotomy ( collected group), and with blood clot ( control group). Animals were sacrificed at 7, 15, and 30 days after surgery ( 4 animals for each time period). The sections were examined by histologic and histomorphometric analysis. Results: At 7 days, the samples were filled by coagulum, and bone particles were observed only in the collected (24%) and particulate groups (44.75%). At 15 days, there was connective differentiation in all groups, with presence of grafted bone particles and onset of newly formed bone in the collected (38.88%) and particulate groups (46.0%). At 30 days, there was bone fill ( immature trabecular bone) of the cavities in the control (50%), collected (64.63%) and particulate groups (66%). Conclusion: No significant difference was demonstrated between noncritical unicortical bone defects in rabbit tibiae filled with particulate bone harvested as a block and subjected to milling and those filled with bone collected during osteotomy with implant drills when the defects were observed up to 30 days following their creation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have developed a biodegradable composite scaffold for bone tissue engineering applications with a pore size and interconnecting macroporosity similar to those of human trabecular bone. The scaffold is fabricated by a process of particle leaching and phase inversion from poly(lactide-co-glycolide) (PLGA) and two calcium phosphate (CaP) phases both of which are resorbable by osteoclasts; the first a particulate within the polymer structure and the second a thin ubiquitous coating. The 3-5 mu m thick osteoconductive surface CaP abrogates the putative foreign body giant cell response to the underlying polymer, while the internal CaP phase provides dimensional stability in an otherwise highly compliant structure. The scaffold may be used as a biomaterial alone, as a carrier for cells or a three-phase drug delivery device. Due to the highly interconnected macroporosity ranging from 81% to 91%, with macropores of 0.8 similar to 1.8 mm, and an ability to wick up blood, the scaffold acts as both a clot-retention device and an osteoconductive support for host bone growth. As a cell delivery vehicle, the scaffold can be first seeded with human mesenchymal cells which can then contribute to bone formation in orthotopic implantation sites, as we show in immune-compromised animal hosts. We have also employed this scaffold in both lithomorph and particulate forms in human patients to maintain alveolar bone height following tooth extraction, and augment alveolar bone height through standard sinus lift approaches. We provide a clinical case report of both of these applications; and we show that the scaffold served to regenerate sufficient bone tissue in the wound site to provide a sound foundation for dental implant placement. At the time of writing, such implants have been in occlusal function for periods of up to 3 years in sites regenerated through the use of the scaffold.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aging is associated with decline in muscle mass and strength and reduced bone density. Age-related bone loss is a primary factor in osteoporosis and all individuals are potential candidates for osteoporosis because bone loss with aging occurs in men and women, but less studied in men. To examine the appropriateness of hindlimb elevation, by tail suspension as a model for diminished mechanical loading, and to determine the influence of age on bone responsiveness to skeletal unloading, we use dual X ray absorptiometry (DXA) and digital radiographic images to analyze the response of the femur from mature rats to biomechanical loads. Femurs from male Wistar rats (9-mo-old) were scanned using DXA and DIGORA and measures obtained in ephipyseal and diaphyseal regions of interest. The mechanical testing was divided into compression load to fracture the head and a three-point bending load to fracture the femur middiaphysis. In femoral epiphysis from hindlimb unload (HU), animals presented significant differences between mineral bone content and density assessed by DXA. Detailed regions of femoral epiphysis (head, throcanteric fossa, throcanter and metaphysis) presented significant lower values from radiographic density. Only compressive load necessary to fracture the femoral head neck was also significantly diminished in HU animals. Disuse induced, as in elderly patients, deterioration of the trabecular bone architecture with critical effect on bone fragility. Rats with 21 days of hindlimb unloading can simulate disuse, suggesting that certain sub-regions of their aging bones are more susceptible to fracture, while other, i.e. diaphyses, are not.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This research evaluated the bone repair process after implantation of homogenous demineralized dentin matrix (HDDM) in surgical defects in the parietal bone of rabbits with alloxan-induced diabetes, using a polytetrafluorethylene (PTFe) barrier for guided bone regeneration. Thirty-six rabbits were used and divided into four groups: control (C, n = 12), diabetic (D, n = 12, left parietal bone), diabetic with PTFe (DPTFe, same 12 rabbits, right parietal bone), and diabetic with PTFe associated to HDDM (D-PTFe+HDDM, n = 12). Bone defects were created in the parietal bone of the rabbits and the experimental treatments were performed, where applicable. The rabbits were sacrificed after 15, 30, 60 and 90 days. The bone defects were examined radiographically and by optical density (ANOVA and Tukey test, p < .05). The radiographic findings showed that the D-PTFe+HDDM group presented greater radiopacity and better trabecular bone arrangement when compared to that of the C, D and D-PTFe groups. The statistical analysis showed significant differences in the optical density of the newly formed bone among the studied groups. It was possible to conclude that HDDM was biocompatible in diabetic rabbits.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction: Excessive consumption of sugar-sweetened beverage is positively related to overweight. Despite the epidemic of childhood obesity, body mass can have a positive or negative effect on bone health. Material and methods: Wistar rats 8 weeks olds were randomly assigned to consume water (Control group, n = 10), sucrose 30% (HS group, n = 10) and water + sucrose 30% (WHS group, n = 14) for 8 weeks. All animals received standard laboratory chow ad libitum. Femur measurements included microhardness, bone mineral density (BMD) by DXA, mechanical compression test and microcomputed tomography (microCT) analysis. Results: We observed significant difference in final body weight in HS and WHS groups, significant increase in triacylglycerol/fructosamine in HS and WHS groups, significantly high BMD in WHS group, increased periosteal/endosteal cortical microhardness in WHS group. Compared with control, microCT parameters evidenced lower amount of connected trabecular bone, decreased bone volume, lower trabecular number with high trabecular separation in distal epiphysis in WHS animals. Conclusion: High-sucrose consumption causes obesity induced by a liquid diet with negative effects on cancellous bone.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: To evaluate the stress distribution in peri-implant bone by simulating the effect of an implant with microthreads and platform switching on angled abutments through tridimensional finite element analysis. The postulated hypothesis was that the presence of microthreads and platform switching would reduce the stress concentration in the cortical bone. Methods: Four mathematical models of a central incisor supported by an implant (5.0mm×13mm) were created in which the type of thread surface in the neck portion (microthreaded or smooth) and the diameter of the angled abutment connection (5.0 and 4.1mm) were varied. These models included the RM (regular platform and microthreads), the RS (regular platform and smooth neck surface), the SM (platform switching and microthreads), and the SS (platform switching and smooth neck). The analysis was performed using ANSYS Workbench 10.0 (Swanson Analysis System). An oblique load (100N) was applied to the palatine surface of the central incisor. The bone/implant interface was considered to be perfectly integrated. Values for the maximum (σmax) and minimum (σmin) principal stress, the equivalent von Mises stress (σvM), and the maximum principal elastic strain (e{open}max) for cortical and trabecular bone were obtained. Results: For the cortical bone, the highest σmax (MPa) were observed for the RM (55.1), the RS (51.0), the SM (49.5), and the SS (44.8) models. The highest σvM (MPa) were found for the RM (45.4), the SM (42.1), the RS (38.7), and the SS models (37). The highest values for σmin were found for the RM, SM, RS and SS models. For the trabecular bone, the highest σmax values (MPa) were observed in the RS model (6.55), followed by the RM (6.37), SS (5.6), and SM (5.2) models. Conclusion: The hypothesis that the presence of microthreads and a switching platform would reduce the stress concentration in the cortical bone was partially rejected, mainly because the microthreads increased the stress concentration in cortical bone. Only platform switching reduced the stress in cortical bone. © 2012 Japan Prosthodontic Society.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to evaluate stress distribution of the peri-implant bone by simulating the biomechanical influence of implants with different diameters of regular or platform switched connections by means of 3-dimensional finite element analysis. Five mathematical models of an implant-supported central incisor were created by varying the diameter (5.5 and 4.5 mm, internal hexagon) and abutment platform (regular and platform switched). For the cortical bone, the highest stress values (rmax and rvm) were observed in situation R1, followed by situations S1, R2, S3, and S2. For the trabecular bone, the highest stress values (rmax) were observed in situation S3, followed by situations R1, S1, R2, and S2. The influence of platform switching was more evident for cortical bone than for trabecular bone and was mainly seen in large platform diameter reduction.