994 resultados para titanium implants


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the possibility of obtaining guided bone regeneration using a poly-tetrafluoroethylene (PTFE) nonporous barrier for 2 endosseous implants, partially inserted in tibiae of rabbits.Materials and Methods: Histologic characteristics of the interface between titanium implants (one group with titanium plasma-coated implants and the other group with acid-treated surfaces) and of the regenerated bone were also studied. Twenty screw-vent implants were placed in tibiae of 5 male New Zealand rabbits, 2 at the right side and 2 at the left side, protruding 3 mm from the bone level, to create a horizontal bone defect. At the experimental group the implants were with a PTFE nonporous barrier, whereas no barriers were used in contralateral implants. Animals were sacrificed 3 months after surgery and biopsy specimens were evaluated histologically and histomorphometrically under light microscopy. Student's t test was used for statistical analysis.Results: The histologic measurements showed a mean gain in bone height of 2.15 and 2.42 mm for the barrier group and 1.95 and 0.43 mm for the control group, for the titanium plasma-spray and acid-treated implant surfaces, respectively.Conclusion: The results of the investigation revealed that the placement of implants protruding 3 nun from crestal bone defects may result in vertical bone augmentation using a nonporous PTFE barrier. (Implant Dent 2009;18:182-191)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO2 or TiO2, and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO4 in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases alpha Ti, beta Ti, Ti6O, Ti3O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters: the aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study we analyzed possible damages that vaporization from laser radiation could cause to implant material. Fifteen standard titanium implants, measuring 3.75 mm in diameter by 7 mm in length, were placed into the upper and lower jaws of three dogs according to Branemark's system. After osseointegration, all implants were exposed. In group I (control) conventional exposure with a punch was used; in group II, a CO2 laser with 2 W (power density: 256 W/cm(2); fluency: 0.077 J/cm(2), and a pulse mode of 0.30 ms) was used, and in group III 4 W (power density: 512 W/cm(2), fluency: 0.154 J/cm(2), and a pulse mode of 0.30 ms) was used. After vaporization, the cover screws were removed and sent for metallographic examination. The results showed that cover screws irradiated with 2 and 4 W power caused no superficial or microstructural alteration. The results also showed that the prescribed power densities, fluencies, and the use of the pulse mode were suitable for exposing implants without damage to tissue or implant material. (C) 2002 Laser Institute of America.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: To describe the healing of marginal defects below or above 1 mm of dimension around submerged implants in a dog model.Material and methods: In 12 Labrador dogs, all mandibular premolars and first molars were extracted bilaterally. After 3 months of healing, full-thickness flaps were elevated in the edentulous region of the right side of the mandible. Two recipient sites were prepared and the marginal 5mm were widened to such an extent to obtain, after implant installation, a marginal gap of 0.5mm at the mesial site (small defect) and of 1.25mm at the distal site (large defect). Titanium healing caps were affixed to the implants and the flaps were sutured allowing a fully submerged healing. The experimental procedures were subsequently performed in the left side of the mandible. The timing of the experiments and sacrifices were planned in such a way to obtain biopsies representing the healing after 5, 10, 20 and 30 days. Ground sections were prepared and histomorphometrically analyzed.Results: The filling of the defect with newly formed bone was incomplete after 1 month of healing in all specimens. Bone formation occurred from the base and the lateral walls of the defects. A larger volume of new bone was formed in the large compared with the small defects. Most of the new bone at the large defect was formed between the 10- and the 20-day period of healing. After 1 month of healing, the outline of the newly formed bone was, however, located at a similar distance from the implant surface (about 0.4mm) at both defect types. Only minor newly formed bone in contact with the implant, starting from the base of the defects, was seen at the large defects (about 0.8mm) while a larger amount was detected at the small defects (about 2.2 mm).Conclusion: Marginal defects around titanium implants appeared to regenerate in 20-30 days by means of a distance osteogenesis. The bone fill of the defects was, however, incomplete after 1 month.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In orofacial implantology there are many types of implants for the different systems. Among these is the implant surface type, e.g., a screw type, cylindrical and laminar. Furthermore, the implants are different in their dimensions, their metal composition, their surface condition, such as smooth, grit or layered surfaces and in their methods of application. Two different self-tapping implants, one smooth and the other grit-blasted, are screwed into the bone, and another one with a plasma of titanium coating, which is also in a screw form but with greater spaces between the screw threads are compared. The greatest amount of bone deposition in the bone/implant interface was encountered in the latter one, the smooth surfaced implant being in second place. All of these systems can alter the implant healing process and to demonstrate this, we injected bone markers in the rabbits over different periods of time so as to observe the different areas of bone deposition in the tibias where the implants had been inserted. The bone tracers used were Alizarin, Calcein and Xylenol-orange. The amount of deposition was calculated by using the method of surface morphometry.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Low-level laser (LLL) has been used on peri-implant tissues for accelerating bone formation. However, the effect of one session of LLL in the strength of bone-implant interface during early healing process remains unclear. The present study aims to evaluate the removal torque of titanium implants irradiated with LLL during surgical preparation of implant bed, in comparison to non-irradiation. Sixty-four Wistar rats were used. Half of the animals were included in LLL group, while the other half remained as control. All animals had the tibia prepared with a 2 mm drill, and a titanium implant (2.2 × 4 mm) was inserted. Animals from LLL group were irradiated with laser (gallium aluminum arsenide), with a wavelength of 808 nm, a measured power output of 50 mW, to emit radiation in collimated beams (0.4 cm2), for 1 min and 23 s, and an energy density of 11 J/cm2. Two applications (22 J/cm 2) were performed immediately after bed preparation for implant installation. Flaps were sutured, and animals from both groups were sacrificed 7, 15, 30, and 45 days after implant installation, when load necessary for removing implant from bone was evaluated by using a torquimeter. In both groups, torque values tended to increase overtime; and at 30 and 45 days periods, values were statistically higher for LLL group in comparison to control (ANOVA test, p < 0.0001). Thus, it could be suggested that a single session of irradiation with LLL was beneficial to improve bone-implant interface strength, contributing to the osseointegration process. © 2012 Springer-Verlag London Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The adsorption behavior of the Tet-124 antimicrobial peptide and the Tet-124 peptide modified at the C- and N-terminus with the sequence glycine-3,4-dihydroxyphenylalanine-glycine (G-DOPA-G) on titanium surfaces was studied using quartz crystal micro balance with dissipation (QCM-D). At a low pH level (4.75) Tet-124 and Tet-124-G-DOPA-G form rigid layers. This is attributed to the electrostatic interactions of the positively charged lysine and arginine residues in the peptide sequence with the negatively charged titanium oxide layer. At an elevated pH level (6.9) Tet-124 shows a lower mass adsorption at the surface than Tet-124-G-DOPA-G. This is attributed to the interaction of the catechol due to the formation of complexes with the titanium oxide and titanium surface layer. The C terminal and N terminal modification with the sequence G-DOPA-G shows similar adsorption rate and mass adsorption coverage at saturation; however it is presented a more loosely layers on the G-DOPA-G-TeT-124. Fibroblast adhesion and the biocompatibility test of both the surfaces following modification with Tet-124-G-DOPA-G and the titanium alloy control showed similar results. In addition, no changes in the adhesion of E. coli bacteria due to the modification of the surface were detected.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: Few reports have evaluated cumulative survival rates of extraoral rehabilitation and peri-implant soft tissue reaction at long-term follow-up. The objective of this study was to evaluate implant and prosthesis survival rates and the soft tissue reactions around the extraoral implants used to support craniofacial prostheses. Materials and Methods: A retrospective study was performed of patients who received implants for craniofacial rehabilitation from 2003 to 2010. Two outcome variables were considered: implant and prosthetic success. The following predictor variables were recorded: gender, age, implant placement location, number and size of implants, irradiation status in the treated field, date of prosthesis delivery, soft tissue response, and date of last follow-up. A statistical model was used to estimate survival rates and associated confidence intervals. We randomly selected 1 implant per patient for analysis. Data were analyzed using the Kaplan-Meier method and log-rank test to compare survival curves. Results: A total of 150 titanium implants were placed in 56 patients. The 2-year overall implant survival rates were 94.1% for auricular implants, 90.9% for nasal implants, 100% for orbital implants, and 100% for complex midfacial implants (P = .585). The implant survival rates were 100% for implants placed in irradiated patients and 94.4% for those placed in nonirradiated patients (P = .324). The 2-year overall prosthesis survival rates were 100% for auricular implants, 90.0% for nasal implants, 92.3% for orbital implants, and 100% for complex midfacial implants (P = .363). The evaluation of the peri-implant soft tissue response showed that 15 patients (26.7%) had a grade 0 soft tissue reaction, 30 (53.5%) had grade 1, 6 (10.7%) had grade 2, and 5 (8.9%) had grade 3. Conclusions: From this study, it was concluded that craniofacial rehabilitation with extraoral implants is a safe, reliable, and predictable method to restore the patient's normal appearance. (C) 2012 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 70:1551-1557, 2012

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: To describe the healing of marginal defects below or above 1 mm of dimension around submerged implants in a dog model. Material and methods: In 12 Labrador dogs, all mandibular premolars and first molars were extracted bilaterally. After 3 months of healing, full-thickness flaps were elevated in the edentulous region of the right side of the mandible. Two recipient sites were prepared and the marginal 5mm were widened to such an extent to obtain, after implant installation, a marginal gap of 0.5mm at the mesial site (small defect) and of 1.25mm at the distal site (large defect). Titanium healing caps were affixed to the implants and the flaps were sutured allowing a fully submerged healing. The experimental procedures were subsequently performed in the left side of the mandible. The timing of the experiments and sacrifices were planned in such a way to obtain biopsies representing the healing after 5, 10, 20 and 30 days. Ground sections were prepared and histomorphometrically analyzed. Results: The filling of the defect with newly formed bone was incomplete after 1 month of healing in all specimens. Bone formation occurred from the base and the lateral walls of the defects. A larger volume of new bone was formed in the large compared with the small defects. Most of the new bone at the large defect was formed between the 10- and the 20-day period of healing. After 1 month of healing, the outline of the newly formed bone was, however, located at a similar distance from the implant surface (about 0.4mm) at both defect types. Only minor newly formed bone in contact with the implant, starting from the base of the defects, was seen at the large defects (about 0.8mm) while a larger amount was detected at the small defects (about 2.2 mm). Conclusion: Marginal defects around titanium implants appeared to regenerate in 20-30 days by means of a distance osteogenesis. The bone fill of the defects was, however, incomplete after 1 month.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: To evaluate the influence of sex, implant characteristics, and bone grafting on the survival rate of dual acid-etched (DAE) implants. Materials and Methods: Patients treated with internal-hex DAE implants for single-tooth replacement in a military dental clinic between January 2005 and December 2010 were included in this study. Clinical data related to implant characteristics, implant location, presence of grafted bone, and implant failures were collected. The primary outcome was implant loss. The survival rate was analyzed using the Kaplan-Meier method. Cox regression modeling was used to determine which factors would predict implant failure. Results: DAE implants were evaluated in a total of 988 patients (80.3% men). Twenty-four (2.4%) implants failed, most were cylindric (54.2%) with regular platforms (70.8%) and were 10 mm long (58.3%). The failure rate was 2.4% for the anterior maxilla, 3.3% for the posterior maxilla, 1.6% for the anterior mandible, and 2.0% for posterior mandible. The cumulative survival rate was 97.6%. The failure rate was 8.8% in implants placed after sinus augmentation, 7.3% in bone block-grafted areas, and 1.6% in native bone. Based on multivariable analysis (Cox regression), sinus augmentation and bone block grafting had a statistically significant effect on implant failure; the hazard ratios were 5.5 and 4.6, respectively. Conclusion: The results revealed that DAE implants had high survival rates, and no influence of sex, location, shape, diameter, or length on failure rates could be observed. However, a significant association was observed between failure and presence of bone graft in the implant area. Int J Oral Maxillofac Implants 2012;27:1243-1248

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Little is known about the benefits of low-level laser therapy (LLLT) on improvement of stability of dental implants. The aim of this randomized clinical study was to assess the LLLT effect on implants stability by means of resonance frequency analysis (RFA). Thirty implants were distributed bilaterally in the posterior mandible of eight patients. At the experimental side, the implants were submitted to LLLT (830 nm, 86 mW, 92.1 J/cm(2), 0.25 J, 3 s/point, at 20 points), and on the control side, the irradiation was simulated (placebo). The first irradiation was performed in the immediate postoperative period, and it was repeated every 48 h in the first 14 days. The initial implant stability quotient (ISQ) of the implants was measured by means of RFA. New ISQ measurements were made after 10 days, 3, 6, 9, and 12 weeks. The initial ISQ values ranged from 65-84, with a mean of 76, undergoing a significant drop in stability from the 10th day to the 6th week in the irradiated group, and presenting a gradual increase from the 6th to the 12th week. The highest ISQ values were observed on the 10th day in the irradiated group, and the lowest in the 6th week in both groups. Under the conditions of this study, no evidence was found of any effect of LLLT on the stability of the implants when measured by RFA. Since high primary stability and good bone quality are of major relevancy for a rigid bone-implant interface, additional LLLT may have little impact macroscopically.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Studies have shown similarities in the microflora between titanium implants or tooth sites when samples are taken by gingival crevicular fluid (GCF) sampling methods. The purpose of the present study was to study the microflora from curette and GCF samples using the checkerboard DNA-DNA hybridization method to assess the microflora of patients who had at least one oral osseo-integrated implant and who were otherwise dentate. Plaque samples were taken from tooth/implant surfaces and from sulcular gingival surfaces with curettes, and from gingival fluid using filter papers. A total of 28 subjects (11 females) were enrolled in the study. The mean age of the subjects was 64.1 years (SD+/-4.7). On average, the implants studied had been in function for 3.7 years (SD+/-2.9). The proportion of Streptococcus oralis (P<0.02) and Fusobacterium periodonticum (P<0.02) was significantly higher at tooth sites (curette samples). The GCF samples yielded higher proportions for 28/40 species studies (P-values varying between 0.05 and 0.001). The proportions of Tannerella forsythia (T. forsythensis), and Treponema denticola were both higher in GCF samples (P<0.02 and P<0.05, respectively) than in curette samples (implant sites). The microbial composition in gingival fluid from samples taken at implant sites differed partly from that of curette samples taken from implant surfaces or from sulcular soft tissues, providing higher counts for most bacteria studied at implant surfaces, but with the exception of Porphyromonas gingivalis. A combination of GCF and curette sampling methods might be the most representative sample method.