816 resultados para timber glulam basalt fibre
Resumo:
In many bridges, vertical displacements are one of the most relevant parameters for structural health monitoring in both the short- and long-terms. Bridge managers around the globe are always looking for a simple way to measure vertical displacements of bridges. However, it is difficult to carry out such measurements. On the other hand, in recent years, with the advancement of fibre-optic technologies, fibre Bragg grating (FBG) sensors are more commonly used in structural health monitoring due to their outstanding advantages including multiplexing capability, immunity of electromagnetic interference as well as high resolution and accuracy. For these reasons, a methodology for measuring the vertical displacements of bridges using FBG sensors is proposed. The methodology includes two approaches. One of which is based on curvature measurements while the other utilises inclination measurements from successfully developed FBG tilt sensors. A series of simulation tests of a full-scale bridge was conducted. It shows that both approaches can be implemented to measure the vertical displacements for bridges with various support conditions, varying stiffness along the spans and without any prior known loading. A static loading beam test with increasing loads at the mid-span and a beam test with different loading locations were conducted to measure vertical displacements using FBG strain sensors and tilt sensors. The results show that the approaches can successfully measure vertical displacements.
Resumo:
We report major and trace element composition, Sr–Nd isotopic and seismological data for a picrite–basalt–rhyolite suite from the northern Tarim uplift (NTU), northwest China. The samples were recovered from 13 boreholes at depths between 5,166 and 6,333 m. The picritic samples have high MgO (14.5–16.8 wt%, volatiles included) enriched in incompatible element and have high 87Sr/86Sr and low 143Nd/144Nd isotopic ratios (εNd (t) = −5.3; Sri = 0.707), resembling the Karoo high-Ti picrites. All the basaltic samples are enriched in TiO2 (2.1–3.2 wt%, volatiles free), have high FeOt abundances (11.27–15.75 wt%, volatiles free), are enriched in incompatible elements and have high Sr and low Nd isotopic ratios (Sri = 0.7049–0.7065; εNd (t) = −4.1 to −0.4). High Nb/La ratios (0.91–1.34) of basalts attest that they are mantle-derived magma with negligible crustal contamination. The rhyolite samples can be subdivided into two coeval groups with overlapping U–Pb zircon ages between 291 ± 4 and 272 ± 2 Ma. Group 1 rhyolites are enriched in Nb and Ta, have similar Nb/La, Nb/U, and Sr–Nd isotopic compositions to the associated basalts, implying that they are formed by fractional crystallization of the basalts. Group 2 rhyolites are depleted in Nb and Ta, have low Nb/La ratios, and have very high Sr and low Nd isotopic ratios, implying that crustal materials have been extensively, if not exclusively, involved in their source. The picrite–basalt–rhyolite suite from the NTU, together with Permian volcanic rocks from elsewhere Tarim basin, constitute a Large Igneous Province (LIP) that is characterized by large areal extent, rapid eruption, OIB-type chemical composition, and eruption of high temperature picritic magma. The Early Permian magmatism, which covered an area >300,000 km2, is therefore named the Tarim Flood Basalt.
Resumo:
AIMS: Recent studies on corneal markers have advocated corneal nerve fibre length as the most important measure of diabetic peripheral neuropathy. The aim of this study was to determine if standardizing corneal nerve fibre length for tortuosity increases its association with other measures of diabetic peripheral neuropathy. METHODS: Two hundred and thirty-one individuals with diabetes with either predominantly mild or absent neuropathic changes and 61 control subjects underwent evaluation of diabetic neuropathy symptom score, neuropathy disability score, testing with 10-g monofilament, quantitative sensory testing (warm, cold, vibration detection) and nerve conduction studies. Corneal nerve fibre length and corneal nerve fibre tortuosity were measured using corneal confocal microscopy. A tortuosity-standardised corneal nerve fibre length variable was generated by dividing corneal nerve fibre length by corneal nerve fibre tortuosity. Differences in corneal nerve morphology between individuals with and without diabetic peripheral neuropathy and control subjects were determined and associations were estimated between corneal morphology and established tests of, and risk factors for, diabetic peripheral neuropathy. RESULTS: The tortuosity-standardised corneal nerve fibre length variable was better than corneal nerve fibre length in demonstrating differences between individuals with diabetes, with and without neuropathy (tortuosity-standardised corneal nerve fibre length variable: 70.5 ± 27.3 vs. 84.9 ± 28.7, P < 0.001, receiver operating characteristic area under the curve = 0.67; corneal nerve fibre length: 15.9 ± 6.9 vs. 18.4 ± 6.2 mm/mm(2) , P = 0.004, receiver operating characteristic area under the curve = 0.64). Furthermore, the tortuosity-standardised corneal nerve fibre length variable demonstrated a significant difference between the control subjects and individuals with diabetes, without neuropathy, while corneal nerve fibre length did not (tortuosity-standardised corneal nerve fibre length variable: 94.3 ± 27.1 vs. 84.9 ± 28.7, P = 0.028; corneal nerve fibre length: 20.1 ± 6.3 vs. 18.4 ± 6.2 mm/mm(2) , P = 0.084). Correlations between corneal nerve fibre length and established measures of neuropathy and risk factors for neuropathy were higher when a correction was made for the nerve tortuosity. CONCLUSIONS: Standardizing corneal nerve fibre length for tortuosity enhances the ability to differentiate individuals with diabetes, with and without neuropathy.
Resumo:
This thesis was the first to define individual lava flow chemical variation and a detailed definition of the Kalkarindji Continental Flood Basalt Province, a lesser known province of the Phanerozoic eon. This thesis conducted an intensive field study that yielded numerous samples for petrography and chemical analyses as well as the generation of a detailed map of a portion of the Kalkarindji province.
Resumo:
Purpose To evaluate the association between retinal nerve fibre layer (RNFL) thickness and diabetic peripheral neuropathy in people with type 2 diabetes, and specifically those at higher risk of foot ulceration. Methods RNFL thicknesses was measured globally and in four quadrants (temporal, superior, nasal and inferior) at 3.45 mm diameter around the optic nerve head using optical coherence tomography (OCT). Severity of neuropathy was assessed using the Neuropathy Disability Score (NDS). Eighty-two participants with type 2 diabetes were stratified according to NDS scores (0-10) as: none, mild, moderate, and severe neuropathy. A control group was additionally included (n=17). Individuals with NDS≥ 6 (moderate and severe neuropathy) have been shown to be at higher risk of foot ulceration. A linear regression model was used to determine the association between RNFL and severity of neuropathy. Age, disease duration and diabetic retinopathy levels were fitted in the models. Independent t-test was employed for comparison between controls and the group without neuropathy, as well as for comparison between groups with higher and lower risk of foot ulceration. Analysis of variance was used to compare across all NDS groups. Results RNFL thickness was significantly associated with NDS in the inferior quadrant (b= -1.46, p=0.03). RNFL thicknesses globally and in superior, temporal and nasal quadrants did not show significant associations with NDS (all p>0.51). These findings were independent of the effect of age, disease duration and retinopathy. RNFL was thinner for the group with NDS ≥ 6 in all quadrants but was significant only inferiorly (p<0.005). RNFL for control participants was not significantly different from the group with diabetes and no neuropathy (superior p=0.07, global and all other quadrants: p>0.23). Mean RNFL thickness was not significantly different between the four NDS groups globally and in all quadrants (p=0.08 for inferior, P>0.14 for all other comparisons). Conclusions Retinal nerve fibre layer thinning is associated with neuropathy in people with type 2 diabetes. This relationship is strongest in the inferior retina and in individuals at higher risk of foot ulceration.
Resumo:
The contemporary default materials for multi-storey buildings – namely concrete and steel – are all significant generators of carbon and the use of timber products provides a technically, economically and environmentally viable alternative. In particular, timber’s sustainability can drive increased use and subsequent evolution of the Blue economy as a new economic model. National research to date, however, indicates a resistance to the uptake of timber technologies in Australia. To investigate this further, a preliminary study involving a convenience sample of 15 experts was conducted to identify the main barriers involved in the use of timber frames in multi-storey buildings. A closed-ended questionnaire survey involving 74 experienced construction industry participants was then undertaken to rate the relative importance of the barriers. The survey confirmed the most significant barriers to be a perceived increase in maintenance costs and fire risk, together with a limited awareness of the emerging timber technologies available. It is expected that the results will benefit government and the timber industry, contributing to environmental improvement by developing strategies to increase the use of timber technologies in multi-storey buildings by countering perceived barriers in the Australian context.
Resumo:
Lignocellulosics represent a renewable resource for producing fuels and chemicals as an alternative to fossil resources. This study utilised an organic acid catalyst and a co-solvent to develop an environmentally friendly processing technology for the production of levulinic acid and furfural from a waste material, sugarcane fibre.
Resumo:
This thesis developed a practical, cost effective, easy-to-use method for measuring the vertical displacements of bridges using fiber Bragg grating (FBG) sensors, which includes the curvature and inclination approaches. These approaches were validated by the numerical simulation tests on a full scale bridge and the laboratory-based tests. In doing so, a novel frictionless FBG inclination sensor with extremely high sensitivity and resolution has also been developed and validated.
Resumo:
The use of circular hollow steel members has attracted a great deal of attention during past few years because of having excellent structural properties, aesthetic appearance, corrosion and fire protection capability. However, no one can deny the structural deficiency of such structures due to reduction of strength when they are exposed to severe environmental conditions such as marine environment, cold and hot weather. Hence strengthening and retrofitting of structural steel members is now very imperative. This paper presents the findings of a research program that was conducted to study the bond durability of carbon fibre-reinforced polymer (CFRP) strengthened steel tubular members under cold weather and tested under four-point bending. Six number of CFRP-strengthened specimens and one unstrengthened specimen were considered in this program. The three specimens having sand blasted surface to be strengthened was pre-treated with MBrace primer and other three were remained untreated and then cured under ambient temperature at least four weeks and cold weather (3 C) for three and six months period of time. Quasi-static tests were then performed on beams to failure under four-point bending. The structural response of each specimen was predicted in terms of failure load, mid-span deflection, composite beam behaviour and failure mode. The research outcomes show that the cold weather immersion had an adverse effect on durability of CFRP-strengthened steel structures. Moreover, the epoxy based adhesion promoter was found to enhance the bond durability in plastic range. The analytical models presented in this study were found to be in good agreement in terms of predicting ultimate load and deflection. Finally, design factors are proposed to address the short-terms durability performance under cold weather.
Resumo:
Improved glycemic control is the only treatment that has been shown to be effective for diabetic peripheral neuropathy in patients with type 1 diabetes (1). Continuous subcutaneous insulin infusion (CSII) is superior to multiple daily insulin injection (MDI) for reducing HbA1c and hypoglycemic events (2). Here, we have compared the benefits of CSII compared withMDI for neuropathy over 24months....
Resumo:
Yield in cultivated cotton (Gossypium spp.) is affected by the number and distribution of fibres initiated on the seed surface but, apart from simple statistical summaries, little has been done to assess this phenotype quantitatively. Here we use two types of spatial statistics to describe and quantify differences in patterning of cotton ovule fibre initials (FI). The following five different species of Gossypium were analysed: G. hirsutum L., G. barbadense L., G. arboreum, G. raimondii Ulbrich. and G. trilobum (DC.) Skovsted. Scanning electron micrographs of FIs were taken on the day of anthesis. Cell centres for fibre and epidermal cells were digitised and analysed by spatial statistics methods appropriate for marked point processes and tessellations. Results were consistent with previously published reports of fibre number and spacing. However, it was shown that the spatial distributions of FIs in all of species examined exhibit regularity, and are not completely random as previously implied. The regular arrangement indicates FIs do not appear independently of each other and we surmise there may be some form of mutual inhibition specifying fibre-initial development. It is concluded that genetic control of FIs differs from that of stomata, another well studied plant idioblast. Since spatial statistics show clear species differences in the distribution of FIs within this genus, they provide a useful method for phenotyping cotton. © CSIRO 2007.
Resumo:
Steel hollow sections used in structures such as bridges, buildings and space structures involve different strengthening techniques according to their structural purpose and shape of the structural member. One such technique is external bonding of CFRP sheets to steel tubes. The performance of CFRP strengthening for steel structures has been proven under static loading while limited studies have been conducted on their behaviour under impact loading. In this study, a comprehensive numerical investigation is carried out to evaluate the response of CFRP strengthened steel tubes under dynamic axial impact loading. Impact force, axial deformation impact velocities are studied. The results of the numerical investigations are validated by experimental results. Based on the developed finite element (FE) model several output parameters are discussed. The results show that CFRP wrapping is an effective strengthening technique to increase the axial dynamic load bearing capacity by increasing the stiffness of the steel tube.
Resumo:
INTRODUCTION. The intervertebral disc is the largest avascular structure in the human body, withstanding transient loads of up to nine times body weight during rigorous physical activity. The key structural elements of the disc are a gel-like nucleus pulposus surrounded by concentric lamellar rings containing criss-crossed collagen fibres. The disc also contains an elastic fiber network which has been suggested to play a structural role, but to date the relationship between the collagen and elastic fiber networks is unclear. CONCLUSION. The multimodal transmitted and reflected polarized light microscopy technique developed here allows clear differentiation between the collagen and elastic fiber networks of the intervertebral disc. The ability to image unstained specimens avoids concerns with uneven stain penetration or specificity of staining. In bovine tail discs, the elastic fiber network is intimately associated with the collagen network.