88 resultados para thiamine
Resumo:
Rhizoctonia solani causes pre- and post-emergence damping-off, root and hypocotyl rot and foliar blight in soybean. Foliar blight has resulted in yield losses of 31-60% in north and northeast Brazil. The aim of this study was to characterize isolates of R. solani associated with soybean in Brazil. Among 73 Rhizoctonia isolates examined, six were binucleate and 67 were multinucleate. The multinucleate isolates were characterized according to hyphal anastomosis reaction, mycelial growth rate, thiamine requirement, sclerotia production, and RAPD molecular markers. Four isolates that caused hypocotyl rot belonged to AG-4 and using RAPD analysis they grouped together with the HGI subgroup. Another isolate that caused root and hypocotyl rots was thiamine auxotrophic, grew at 35 °C, and belonged to AG-2-2 IIIB. All 62 isolates that caused foliar blight belonged to AG-1 IA. RAPD analysis of R. solani AG-1 IA soybean isolates showed high genetic similarity to a tester strain of AG-1 IA, confirming their classification. The teleomorph of R. solani, Thanatephorus cucumeris was produced in vitro by one AG-1 IA isolate from soybean. The AG-4 and AG-2-2 IIIB isolates caused damping-off and root and hypocotyl rots of soybean seedlings cv. 'FT-Cristalina', under greenhouse conditions. The AG-2-2 IIIB isolate caused large lesions on the cortex tissue, that was distinct from the symptoms caused by AG-4 isolates. The AG-1 IA isolates caused foliar blight in adult soybean plants cv. 'Xingu' under the greenhouse and also in a detached-leaf assay.
Resumo:
The effects of some B vitamins on chemical nociception in mice or paw edema in rats were investigated. A combination of thiamine (B1), pyridoxine (B6) and cyanocobalamin (B12), in doses of 100,100 and 5mg/kg, i.p., respectively, potentiated the inhibition by diclofenac or thalidomide of paw edema induced by carrageenin in rat. Antinociceptive effects of diclofenac and thalidomide inhibition of abdominal contortion were also potentiated by the combination of the vitamins B1, B6 and B12. Thiamine, pyridoxine and cyanocobalamin given singly were effective in potentiating antinociceptive effects of thalidomide, but only cyanocobalamin potentiated these effects of diclofenac, probably reflecting the differing mechanisms of action of the two drugs. The results document the positive influence of B vitamins on antinociceptive effects of diclofenac or thalidomide and support the use of B vitamins to shorten the treatment time and reduce the daily dose of anti-inflammatories.
Resumo:
The effects of a combination of some B vitamins and diclofenac or nimesulide on chemical nociception in mice or paw edema in rats were investigated. While the vitamins alone had no effect, combination of thiamine (B1), pyridoxine (B6) and cyanocobalamin (B12), given i.p. in doses of 100mg and 5mg/kg, respectively, potentiated the inhibition by nimesulide (5mg/kg) of paw edema induced by carrageenin in rats. Antinociceptive effects of diclofenac and nimesulide (inhibition of abdominal writhing induced by acetic acid in mice) were also potentiated by the combination of the vitamins B1, B6 and B12. Thiamine, pyridoxine and cyanocobalamin given singly were effective in potentiating antinociceptive effects of nimesulide, but only cyanocobalamin potentiated these effects of diclofenac, probably reflecting the differing mechanisms of action of the two drugs. The results document the positive influence of B vitamins on the antinociceptive effects of diclofenac or nimesulide and support the use of B vitamins to shorten the treatment time and reduce the daily dose of anti-inflammatories.
Resumo:
The aims of this investigation was to evaluate the effect of hepatoprotective treatments with a compound prepared by the association of N-Acetyl DL-Methionine (5%) + Choline chloride (2%) + Caffeine (1%) + Thiamine hydrochloride (1%) + Nicotinamida (0,5%)+ Pyridoxine hydrochloride (0.04%), administered through intramuscular (IM) route, at doses of 0.2, 0.6 and 1.0 mL/kg of BW, through the study of leukocytes responses in rats submitted to acute intoxication with CCl4. 147 females were randomized into 21 groups, performing five different treatments, which were evaluated seven animals in four periods: two, four, six and eight days after CCl4-induced intoxication. In this study, it was observed absolute eosinophilia and monocytosis in animals untreated and treated with the lowest dose of 0.2 mL. These responses were significantly better in animals treated with 0.6 and 1.0 mL/ kg BW. The untreated animals showed thrombocytopenia, when compared to treated animals. Absolute neutropenia and lymphocytosis was observed in all rats intoxicated with CCl4, there is no difference among treatments. The analysis of white blood cells demonstrated that the hepatoprotective treatments favored the leukocyte response, by act beneficially on the population of these cells, supporting the hypothesis that these events may reduce the deleterious effects in liver tissue after intoxication by CCl4.
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Livestock poisoning by plants is a frequent occurrence which determines severe losses, such as the fall in the milk and meat production, the cost of expensive treatments, the state of immunosuppression, or even the animal's death. Cattle ingest toxic plants only when there is food shortage, when they cannot select what they eat, or when they ingest food for preference, which is the case of Hovenia dulcis fruits, very rich in sucrose. This plant is widely distributed in the southern and southeastern Brazilian regions. In literature, there are some cases of severe human liver injury associated with a long-term of H. dulcis leaf and fruit tea intake, and only one report regarding spontaneous poisoning of goats caused by this plant ingestion. However, its toxic effects associated with spontaneous ingestion by cattle have never been reported. This paper reports the first case of spontaneous poisoning in cattle by H. dulcis, which occurred in a dairy farm in southwest Paraná, Brazil. Three cattle individuals showed anorexia, ruminal atony, severe diarrhea and neurological tournament, head pressing, blindness, ataxia, and circling. The necropsy of the animals was done, and the remaining alterations were restricted to the digestive system and brain. The clinical signs presented by the animals are characteristic of polioencephalomalacia (PEM), caused by changes in the thiamine metabolism. Furthermore, clinical signs, gross, and microscopic lesions as well as the large amount of the plant throughout the digestive segment led to a diagnosis.
Resumo:
Some non-pathogenic trypanosomatids maintain a mutualistic relationship with a betaproteobacterium of the Alcaligenaceae family. Intensive nutritional exchanges have been reported between the two partners, indicating that these protozoa are excellent biological models to study metabolic co-evolution. We previously sequenced and herein investigate the entire genomes of five trypanosomatids which harbor a symbiotic bacterium (SHTs for Symbiont-Haboring Trypanosomatids) and the respective bacteria (TPEs for Trypanosomatid Proteobacterial Endosymbiont), as well as two trypanosomatids without symbionts (RTs for Regular Trypanosomatids), for the presence of genes of the classical pathways for vitamin biosynthesis. Our data show that genes for the biosynthetic pathways of thiamine, biotin, and nicotinic acid are absent from all trypanosomatid genomes. This is in agreement with the absolute growth requirement for these vitamins in all protozoa of the family. Also absent from the genomes of RTs are the genes for the synthesis of pantothenic acid, folic acid, riboflavin, and vitamin B6. This is also in agreement with the available data showing that RTs are auxotrophic for these essential vitamins. On the other hand, SHTs are autotrophic for such vitamins. Indeed, all the genes of the corresponding biosynthetic pathways were identified, most of them in the symbiont genomes, while a few genes, mostly of eukaryotic origin, were found in the host genomes. The only exceptions to the latter are: the gene coding for the enzyme ketopantoate reductase (EC:1.1.1.169) which is related instead to the Firmicutes bacteria; and two other genes, one involved in the salvage pathway of pantothenic acid and the other in the synthesis of ubiquinone, that are related to Gammaproteobacteria. Their presence in trypanosomatids may result from lateral gene transfer. Taken together, our results reinforce the idea that the low nutritional requirement of SHTs is associated with the presence of the symbiotic bacterium, which contains most genes for vitamin production.
Resumo:
Staphylococcus aureus TenA (SaTenA) is a thiaminase type II enzyme that catalyzes the deamination of aminopyrimidine, as well as the cleavage of thiamine into 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) and 5-(2-hydroxyethyl)-4-methylthiazole (THZ), within thiamine (vitamin B1) metabolism. Further, by analogy with studies of Bacillus subtilis TenA, SaTenA may act as a regulator controlling the secretion of extracellular proteases such as the subtilisin type of enzymes in bacteria. Thiamine biosynthesis has been identified as a potential drug target of the multi-resistant pathogen S. aureus and therefore all enzymes involved in the S. aureus thiamine pathway are presently being investigated in detail. Here, the structure of SaTenA, determined by molecular replacement and refined at 2.7 A ° resolution to an R factor of 21.6% with one homotetramer in the asymmetric unit in the orthorhombic space group P212121, is presented. The tetrameric state of wild-type (WT) SaTenA was postulated to be the functional biological unit and was confirmed by small-angle X-ray scattering (SAXS) experiments in solution. To obtain insights into structural and functional features of the oligomeric SaTenA, comparative kinetic investigations as well as experiments analyzing the structural stability of the WT SaTenA tetramer versus a monomeric SaTenA mutant were performed.
Resumo:
The refeeding syndrome is a potentially lethal complication of refeeding in patients who are severely malnourished from whatever cause. Too rapid refeeding, particularly with carbohydrate may precipitate a number of metabolic and pathophysiological complications, which may adversely affect the cardiac, respiratory, haematological, hepatic and neuromuscular systems leading to clinical complications and even death. We aimed to review the development of the refeeding syndrome in a variety of situations and, from this and the literature, devise guidelines to prevent and treat the condition. We report seven cases illustrating different aspects of the refeeding syndrome and the measures used to treat it. The specific complications encountered, their physiological mechanisms, identification of patients at risk, and prevention and treatment are discussed. Each case developed one or more of the features of the refeeding syndrome including deficiencies and low plasma levels of potassium, phosphate, magnesium and thiamine combined with salt and water retention. These responded to specific interventions. In most cases, these abnormalities could have been anticipated and prevented. The main features of the refeeding syndrome are described with a protocol to anticipate, prevent and treat the condition in adults.
Resumo:
Screening, Identification and Preliminary Investigation of Target Transporters in Pregnancy Pathologies. INTRODUCTION: Pre-eclampsia (PE), intrauterine growth restriction (IUGR) and gestational diabetes mellitus (GDM) are major sources of clinical morbidity and mortality in pregnant women worldwide. The mechanisms underlying these gestational diseases are complex and not yet fully understood, but one factor contributing to their development is impaired maternal-fetal nutrient transport. Therefore, we aimed to identify candidate membrane transporters involved in transplacental nutrient transfer associated with PE/IUGR or GDM. METHODS: Using in silico strategies, we analysed various gene expression data sets generated on different platforms focusing on solute carriers, ABC transporters and TRP channels in order to identify transporters that are differently expressed between patients and gestational age-matched controls. These bioinformatic analyses were combined with literature data to define a catalogue of target transporters that could be involved in the development of PE/IUGR or GDM. Transporters of interest were then analysed for gene expression using qRT-PCR in placental tissues of patients and controls. For validating the results on protein and functional level, we started to establish an in vitro assay using freshly isolated primary cytotrophoblast cells polarized on the Transwell® system. RESULTS: Using bioinformatics approaches, we initially identified 37 target membrane proteins which were mainly associated with the transport of amino acids, vitamins, and trace elements. At the current state of analysis, the amino acid transporters SLC7A7, SLC38A2, SLC38A5, and the thiamine transporter SLC19A3 showed significant differences in placental mRNA expression between controls and patients affected by PE and/or IUGR. Subsequent gene expression analysis in our in-house GDM placental tissue bank is still ongoing. CONCLUSIONS: Based on our in silico analyses, literature data and first follow-up in vitro validations, we were able to define potentially interesting candidate transporters implicated in PE/IUGR or GDM. To date, additional newly defined candidate targets are being analysed on mRNA level in PE/IUGR and GDM. Subsequent analyses on protein and functional level will reveal whether these targets could be of diagnostic or therapeutical interest in these pregnancy pathologies.
Resumo:
We report on a 61-year-old patient who suffered from severe protein-energy malnutrition due to an inadequately treated exocrine pancreatic insufficiency. In this context, a thiamine deficiency was not recognized and there were clinical manifestations of beriberi disease with decompensated biventricular heart failure. In the course of time, a manifest niacin deficiency (pellagra) with dermatitis, diarrhea and persistent delirium occurred, which was recognized and could be treated. We highlight differential diagnostic considerations about the consequences and the treatment of malnutrition, with special focus on the classical deficiency diseases beriberi and pellagra.
Resumo:
A Ca2+-requiring catalytic RNA is shown to create 5′ phosphate–phosphate linkages with all nucleotides and coenzymes including CoA, nicotinamide adenine dinucleotide phosphate, thiamine phosphate, thiamine pyrophosphate, and flavin mononucleotide. In addition to these small molecules, macromolecules such as RNAs with 5′-diphosphates, and nonnucleotide molecules like Nɛ-phosphate arginine and 6-phosphate gluconic acid also react. That is, the self-capping RNA isolate 6 is an apparently universal 5′ phosphate-linker, reacting with any nucleophile containing an unblocked phosphate. These RNA reactions demonstrate a unique RNA catalytic capability and imply versatile and specific posttranscriptional RNA modification by RNA catalysis.