968 resultados para thermo-physics properties


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cells unitaria of the solid oxide fuel cell are separated by means of interconnects, which serve as electrical contact between the cells. Lanthanum Chromite (LaCrO3) has been the most common material used as interconnect in solid oxide fuel cells. Reducing the operating temperature around 800 º C of cells to solid oxide fuel make possibilite the use of metallic interconnects as an alternative to ceramic LaCrO3. Metallic interconnects have advantages over ceramic interconnects such as high thermal conductivity, electricity, good ductility, low cost, good physical and mechanical properties. In this work evaluate the thermo-mechanical properties of the metallic substrate and coated metallic substrate with the ceramic LaCrO3 film via spray-pyrolysis, in order to demonstrate the feasibility of using this material as a component of a fuel cell solid oxide. The materials were characterized by X-ray diffraction, oxidation behavior, mechanical strength, optical microscopy (OM) and scanning electron microscopy (SEM). The X-ray diffraction proved the formation phase of the LaCrO3 on the metallic substrate and the identification of the phases formed after the oxidative test and mechanical strength at high temperature. The oxidation behavior showed the increased oxidation resistance of the coated metallic substrate. It was noted that the mechanical resistance to bending of the coated metallic substrate only increases at room temperature. The optical microscopy (OM) has provided an assessment of both the metallic substrate and the LaCrO3 film deposited on the metal substrate that, in comparison with the micrographs obtained from SEM. The SEM one proved the formation of Cr2O3 layer on the metallic substrate and stability of LaCrO3 film after oxidative test, it can also observe the displacement of the ceramic LaCrO3 film after of mechanical testing and mapping of the main elements as chromium, manganese, oxygen, lanthanum in samples after the thermo-mechanical tests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The behaviour of bone tissue during drilling has been subject of recent studies due to its great importance. Because of thermal nature of the bone drilling, high temperatures and thermal mechanical stresses are developed during drilling that affect the process quality. However, there is still a lack information with regard to the distribution of mechanical and thermal stresses during bone drilling. The present paper describes a sequentially coupled thermal-stress analysis to assess the mechanical and thermal stress distribution during bone drilling. A three-dimensional thermo-mechanical model was developed using the ANSYS/LSDYNA finite element code under different drilling conditions. The model incorporates the dynamic characteristics of drilling process, as well as the thermo-mechanical properties of the involved materials. Experimental tests with polyurethane foam materials were also carried out. It was concluded that the use of higher feed-rates lead to a decrease of normal stresses and strains in the foam materials. The experimental and numerical results were compared and showed good agreement. The proposed numerical model could be used to predict the better drilling parameters and minimize the bone injuries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Doped lanthanum chromite ( LaCrO3 ) has been the most common material used as interconnect in solid oxide fuel cells for high temperature ( SOFC-HT ) that enabling the stack of SOFCs. The reduction of the operating temperature, to around 800 º C, of solid oxide fuel cells enabled the use of metallic interconnects as an alternative to ceramic LaCrO3, From the practical point of view, to be a strong candidate for interconnect the material must have good physical and mechanical properties such as resistance to oxidizing and reducing environments, easy manufacture and appropriate thermo-mechanical properties. Thus, a study on the physic-mechanical interconnects La0,8Sr0,2Cr0,92Co0,08O3 ceramics for SOFC -AT obtained by the method of combustion , as well as thermo-mechanical properties of metallic interconnects (AISI 444) covered with La0,8Ca0,2CrO3 by deposition technique by spray-pyrolysis fuel cells for intermediate temperature (IT-SOFCs). The La0,8Sr0,2Cr0,92Co0,08O3 was characterized by X -ray diffraction(XRD) , density and porosity , Vickers hardness (HV) , the flexural strength at room temperature and 900 °C and scanning electron microscopy (SEM). The X -ray diffraction confirmed the phase formation and LaCrO3 and CoCr2O4, in order 6 GPa hardness and mechanical strength at room temperature was 62 MPa ceramic Interconnector. The coated metal interconnects La0,8Ca0,2CrO3 passed the identification by XRD after deposition of the film after the oxidation test. The oxidative behavior showed increased resistance to oxidation of the metal substrate covered by La0,8Ca0,2CrO3 In flexural strength of the coated metal substrate, it was noticed only in the increased room temperature. The a SEM analysis proved the formation of Cr2O3 and (Cr,Mn)3O4 layers on metal substrate and confirmed the stability of the ceramic La0,8 Ca0,2CrO3 film after oxidative test

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epoxy resins are widely used in many applications, such as paints, adhesives and matrices for composites materials, since they present the possibility to be easily and conveniently tailored in order to display a unique combination of characteristics. In literature, various examples of bio-based epoxy resins produced from a wide range of renewable sources can be found. Nevertheless, the toxicity and safety of curing agents have not been deeply investigated and it was observed that all of them still present some environmental drawback. Therefore, the development of new environmentally friendly fully bio-based epoxy systems is of great importance for designing green and sustainable materials. In this context, the present project aims at further exploring the possibility of using bio-based compounds as curing agents for epoxy resin precursors. A preliminary evaluation of several amine-based compounds demonstrated the feasibility of using Adenine as epoxy resin hardener. In order to better understand the crosslinking mechanism, the reaction of Adenine with the mono-epoxy compound Glycidyl 2-methylphenyl ether (G2MPE), was study by 1H-NMR analysis. Then Adenine was investigated as hardener of Diglycidil ether of bisphenol A (DGEBA), which is the simplest epoxy resin based on bisphenol A, in order to determine the best hardener/resin stoichiometric ratio, and evaluate the crosslinking kinetics and conversion and the final mechanical properties of the cured resin. Then, Adenine was tested as hardener of commercial epoxy resins, in particular the infusion resin Elan-tron® EC 157 (Elantas), the impregnation resin EPON™ Resin 828 (Hexion) and the bio-based resin SUPER SAP® CLR (Entropyresins). Such systems were used for the production of composites materials reinforced with chopped recycled carbon fibers and natural fibers (flax and jute). The thermo-mechanical properties of these materials have been studied in comparison with those ones of composites obtained with the same thermosetting resin reinforced with chopped virgin carbon fibers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PLA is a bio-based polymer that is obtained from renewable resources and it is very promising for a sustainable packaging manufacturing. However, its gas and vapour barrier properties are not enough to comply with the requirements of MAP packaging of fresh foods, which need specific concentration of water and oxygen to avoid spoilage and to keep the organoleptic properties unaltered throughout their shelf-life. The use of waxes from natural renewable sources such as plants (e.g., candelilla wax, carnauba wax, rice bran wax, sunflower wax) or animals (e.g., beeswax) could tackle down the permeation of water vapour through the packaging without affecting its bio-based content. The core of this work is developing wax-based coatings with enhanced thermo-mechanical properties so that they can undergo thermoforming and a proper adhesion to the PLA substrate can be ensured. Chemical modifications and crosslinking of waxes are performed to produce wax-based alkyd resins. The synthesised materials are characterised both by DSC and FTIR. Films of the wax-based alkyds are produced in order to assess their water vapour permeability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, a high-performance composite was prepared from jute fabrics and polypropylene (PP). In order to improve the compatibility of the polar fibers and the non-polar matrix, alkyl gallates with different hydrophobic groups were enzymatically grafted onto jute fabric by laccase to increase the surface hydrophobicity of the fiber. The grafting products were characterized by FTIR. The results of contact angle and wetting time showed that the hydrophobicity of the jute fabrics was improved after the surface modification. The effect of the enzymatic graft modification on the properties of the jute/PP composites was evaluated. Results showed that after the modification, tensile and dynamic mechanical properties of composites improved, and water absorption and thickness swelling clearly decreased. However, tensile properties drastically decreased after a long period of water immersion. The thermal behavior of the composites was evaluated by TGA/DTG. The fiber-matrix morphology in the modified jute/PP composites was confirmed by SEM analysis of the tensile fractured specimens.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ABSTRACT Particle density, gravimetric and volumetric water contents and porosity are important basic concepts to characterize porous systems such as soils. This paper presents a proposal of an experimental method to measure these physical properties, applicable in experimental physics classes, in porous media samples consisting of spheres with the same diameter (monodisperse medium) and with different diameters (polydisperse medium). Soil samples are not used given the difficulty of working with this porous medium in laboratories dedicated to teaching basic experimental physics. The paper describes the method to be followed and results of two case studies, one in monodisperse medium and the other in polydisperse medium. The particle density results were very close to theoretical values for lead spheres, whose relative deviation (RD) was -2.9 % and +0.1 % RD for the iron spheres. The RD of porosity was also low: -3.6 % for lead spheres and -1.2 % for iron spheres, in the comparison of procedures – using particle and porous medium densities and saturated volumetric water content – and monodisperse and polydisperse media.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cette thèse concerne l’étude de phase de séparation de deux polymères thermosensibles connus-poly(N-isopropylacylamide) (PNIPAM) et poly(2-isopropyl-2-oxazoline) (PIPOZ). Parmi des études variées sur ces deux polymères, il y a encore deux parties de leurs propriétés thermiques inexplicites à être étudiées. Une partie concerne l’effet de consolvant de PNIPAM dans l’eau et un autre solvant hydromiscible. L’autre est l’effet de propriétés de groupes terminaux de chaînes sur la séparation de phase de PIPOZ. Pour ce faire, nous avons d’abord étudié l’effet de l’architecture de chaînes sur l’effet de cosolvant de PNIPAMs dans le mélange de méthanol/eau en utilisant un PNIPAM en étoile avec 4 branches et un PNIPAM cyclique comme modèles. Avec PNIPAM en étoile, l’adhérence de branches PNIPAM de à un cœur hydrophobique provoque une réduction de Tc (la température du point de turbidité) et une enthalpie plus faible de la transition de phase. En revanche, la Tc de PNIPAM en étoile dépend de la masse molaire de polymère. La coopérativité de déhydratation diminue pour PNIPAM en étoile et PNIPAM cyclique à cause de la limite topologique. Une étude sur l’influence de concentration en polymère sur l’effet de cosolvant de PNIPAM dans le mélange méthanol/eau a montré qu’une séparation de phase liquide-liquide macroscopique (MLLPS) a lieu pour une solution de PNIPAM dans le mélange méthanol/eau avec la fraction molaire de méthanol entre 0.127 et 0.421 et la concentration en PNIPAM est constante à 10 g.L-1. Après deux jours d’équilibration à température ambiante, la suspension turbide de PNIPAM dans le mélange méthanol/eau se sépare en deux phases dont une phase possède beaucoup plus de PNIPAM que l’autre. Un diagramme de phase qui montre la MLLPS pour le mélange PNIPAM/eau/méthanol a été établi à base de données expérimentales. La taille et la morphologie de gouttelettes dans la phase riche en polymère condensée dépendent de la fraction molaire de méthanol. Parce que la présence de méthanol influence la tension de surface des gouttelettes liquides, un équilibre lent de la séparation de phase pour PNIPAM/eau/méthanol système a été accéléré et une séparation de phase liquide-liquide macroscopique apparait. Afin d’étudier l’effet de groupes terminaux sur les propriétés de solution de PIPOZ, deux PIPOZs téléchéliques avec groupe perfluorodécanyle (FPIPOZ) ou groupe octadécyle (C18PIPOZ) comme extrémités de chaîne ont été synthétisés. Les valeurs de Tc des polymères téléchéliques ont beaucoup diminué par rapport à celle de PIPOZ. Des micelles stables se forment dans des solutions aqueuses de polymères téléchéliques. La micellization et la séparation de phase de ces polymères dans l’eau ont été étudiées. La séparation de phase de PIPOZs téléchéliques suit le mécanisme de MLLPS. Des différences en tailles de gouttelettes formées à l’intérieur de solutions de deux polymères ont été observées. Pour étudier profondément les différences dans le comportement d’association entre deux polymères téléchéliques, les intensités des signaux de polymères correspondants et les temps de relaxation T1, T2 ont été mesurés. Des valeurs de T2 de protons correspondants aux IPOZs sont plus hautes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thesis aims to present the results of the experimental investigations on the electrical properties like electrical conductivity, dielectric constant and ionic thermo~ currents in certain ammonium containing ferroelectric crystals viz. LiNH4SO4, (NH4)2SO4 and (NH4)5H(SO4)2. Special attention has been paid in revealing the mechanisms of electrical conduction in the various phases of these crystals and those asso~ ciated with the different phase transitions occurring in them, by making studies on doped, quenched and deuterated crystals. The report on the observation of two new phase transitions in (NH4) S O2 and of a similar one in ( NH4 ) H (2SO4 ) are included. The relaxation mechanisms of the impurity-vacancy complexes and the space charge phenomena in pure and doped crystals of LiNH4SO4 and (NH4)2SO4 and the observation of a new type of ionic thermo-current viz. Protonic Thermo-Current (PTC) in these crystals are also presented here.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work shows the preparation and characterization of composites obtained by mixing natural rubber (NR) and carbon black (CB) in different percentages aiming suitable mechanical properties, processability and electrical conductivity for future applications as transducers in pressure sensors. The composites NR/CB are characterized through dc conductivity, thermal analysis using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMA), thermogravimetry (TGA) and stress-strain test. The electrical conductivity changed from 10-9 to 10 Sm-1 depending on the percentage of CB in the composite. Besides, it was found a linear (and reversible) dependence of the conductivity on the applied pressure in the range from 0 to 1.6 MPa for the sample 80/20 (NR/CB wt%).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Digital rock physics combines modern imaging with advanced numerical simulations to analyze the physical properties of rocks -- In this paper we suggest a special segmentation procedure which is applied to a carbonate rock from Switzerland -- Starting point is a CTscan of a specimen of Hauptmuschelkalk -- The first step applied to the raw image data is a nonlocal mean filter -- We then apply different thresholds to identify pores and solid phases -- Because we are aware of a nonneglectable amount of unresolved microporosity we also define intermediate phases -- Based on this segmentation determine porositydependent values for the pwave velocity and for the permeability -- The porosity measured in the laboratory is then used to compare our numerical data with experimental data -- We observe a good agreement -- Future work includes an analytic validation to the numerical results of the pwave velocity upper bound, employing different filters for the image segmentation and using data with higher resolution

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As graphene has become one of the most important materials, there is renewed interest in other similar structures. One example is silicene, the silicon analogue of graphene. It shares some of the remarkable graphene properties, such as the Dirac cone, but presents some distinct ones, such as a pronounced structural buckling. We have investigated, through density functional based tight-binding (DFTB), as well as reactive molecular dynamics (using ReaxFF), the mechanical properties of suspended single-layer silicene. We calculated the elastic constants, analyzed the fracture patterns and edge reconstructions. We also addressed the stress distributions, unbuckling mechanisms and the fracture dependence on the temperature. We analysed the differences due to distinct edge morphologies, namely zigzag and armchair.