117 resultados para tetrafluoroborate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herein, we present the formulation and the characterization of novel adiponitrile-based electrolytes as a function of the salt structure, concentration, and temperature for supercapacitor applications using activated carbon based electrode material. To drive this study two salts were selected, namely, the tetraethylammonium tetrafluoroborate and the 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide. Prior to determination of their electrochemical performance, formulated electrolytes were first characterized to quantify their thermal, volumetric, and transport properties as a function of temperature and composition. Then, cyclic voltammetry and electrochemical impedance spectroscopy techniques were used to investigate their electrochemical properties as electrolyte for supercapacitor applications in comparison with those reported for the currently used model electrolyte based on the dissolution of 1 mol·dm–3 of tetraethylammonium tetrafluoroborate in acetonitrile. Surprisingly, excellent electrochemical performances were observed by testing adiponitrile-based electrolytes, especially those containing the 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide room-temperature molten salt. Differences observed on electrochemical performances between the selected adiponitrile electrolytes based on high-temperature (tetraethylammonium tetrafluoroborate) and the room-temperature (1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide) molten salts are mainly driven by the salt solubility in adiponitrile, as well as by the charge and the structure of each involved species. Furthermore, in comparison with classical electrolytes, the selected adiponitrile +1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide solution exhibits almost similar specific capacitances and lower equivalent serial resistance. These results demonstrate in fact that the adiponitrile +1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide mixture can be used for the formulation of safer electrolytes presenting a very low vapor pressure even at high temperatures to design acetonitrile-free supercapacitor devices with comparable performances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Farmácia (Química Farmacêutica e Terapêutica), Universidade de Lisboa, Faculdade de Farmácia, 2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The disclosure of magnetic ionic liquids (MILs) as stable dispersions of surface modified gamma-Fe(2)O(3) or CoFe(2)O(4) nanoparticles (NPs) in the 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMIBF(4)) ionic liquid is reported. The magnetic NPs were characterized by X-ray powder diffraction, transmission electron microscopy, and Raman spectroscopy. The surface modified NPs have proved to form stable dispersions in BMIBF(4) in the absence of water and behave like a magnetic ionic liquid. The MILs have been characterized by Raman spectroscopy, magnetic measurements, and DSC. The stability of the magnetic NPs in BMIBF(4) is consistently explained by assuming the formation of a semiorganized protective layer composed of supramolecular aggregates in the form of [(BMI)(2)(BF(4))(3)](-). A superparamagnetic behavior and saturation magnetization of ca. 18 emu/g for a sample containing 30% w/w maghemite NPs/BMIBF(4) have been inferred from static and dynamic magnetic measurements. DSC results have shown that the MIL composed of 30% w/w CoFe(2)O(4) NPs/BMIBF(4) remains a liquid phase down to -84 degrees C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The MnO2 oxidation of codeine methyl ether, CME, to thebaine has been accomplished via the use of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, bmimBF4. The ionic liquid has been used to remove or extract excess MnO2 and associated impurities from the reaction mixture to afford thebaine in 36 to >95% yield. © 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate [bmIm][BF4] and 1-butyl-3-methylimidazolium hexafluorophosphate [bmIm][PF6] were evaluated as reaction media for allylic and benzylic oxidation reactions using manganese dioxide. The use of ionic liquids as an extractant in the reaction work-up was also investigated. Procedures for recycling of the [bmIm][PF6] ionic liquids used in these MnO2 oxidation reactions were also developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A poly(3-methylthiophene) (PMT)/multi-walled carbon nanotube (CNT) composite is synthesized by in situ chemical polymerization. The PMT/CNT composite is used as an active cathode material in lithium metal polymer cells assembled with ionic liquid (IL) electrolytes. The IL electrolyte consists of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) and LiBF4. A small amount of vinylene carbonate is added to the IL electrolyte to prevent the reductive decomposition of the imidazolium cation in EMIBF4. A porous poly(vinylidene fluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) film is used as a polymer membrane for assembling the cells. Electrochemical properties of the PMT/CNT composite electrode in the IL electrolyte are evaluated and the effect of vinylene carbonate on the cycling performance of the lithium metal polymer cells is investigated. The cells assembled with a non-flammable IL electrolyte and a PMT/CNT composite cathode are promising candidates for high-voltage–power sources with enhanced safety.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

π-Conjugated polymers that are electrochemically cycled in ionic liquids have enhanced lifetimes without failure (up to 1 million cycles) and fast cycle switching speeds (100 ms). We report results for electrochemical mechanical actuators, electrochromic windows, and numeric displays made from three types of π-conjugated polymers: polyaniline, polypyrrole, and polythiophene. Experiments were performed under ambient conditions, yet the polymers showed negligible loss in electroactivity. These performance advantages were obtained by using environmentally stable, room-temperature ionic liquids composed of 1-butyl-3-methyl imidazolium cations together with anions such as tetrafluoroborate or hexafluorophosphate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The treatment of an organic ionic plastic crystal electrolyte N-methyl-N-ethylpyrrolidinium tetrafluoroborate (P1,2BF4) with supercritical CO2 resulted in a substantial increase in ionic conductivity, especially in the more highly ordered solid phases of the material, and also stabilised the most ordered phase to lower temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrochemical studies on the Fc + e− Fc+ (Fc = ferrocene) process have been undertaken via the oxidation of Fc and reduction of Fc+ as the hexafluorophosphate (PF6−) or tetrafluoroborate (BF4−) salts and their mixtures in three ionic liquids (ILs) (1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide, 1-butyl-3-methylimidazolium tetrafluoroborate, and 1-butyl-3-methylimidazolium hexafluorophosphate). Data obtained at macro- and microdisk electrodes using conventional dc and Fourier-transformed large-amplitude ac (FT-ac) voltammetry reveal that diffusion coefficients for Fc and Fc+ differ significantly and are a function of the Fc and Fc+ concentration, in contrast to findings in molecular solvents with 0.1 M added supporting electrolyte media. Thus, the Faradaic currents associated with the oxidation of Fc (Fc0/+) and reduction of FcPF6 or FcBF4 (Fc+/0) when both Fc and Fc+ are simultaneously present in the ILs differ from values obtained when individual Fc and Fc+ solutions are used. The voltammetry for both the Fc0/+ and Fc+/0 processes exhibited near-Nernstian behavior at a glassy carbon macrodisk electrode and a platinum microdisk electrode, when each process was studied individually in the ILs. As expected, the reversible formal potentials (E°′) and diffusion coefficients (D) at 23 ± 1 °C were independent of the electrode material and concentration. However, when Fc and FcPF6 or FcBF4 were both present, alterations to the mass transport process occurred and apparent D values calculated for Fc and Fc+ were found to be about 25−39% and 32−42% larger, respectively, than those determined from individual solutions. The apparent value of the double layer capacitance determined by FT-ac voltammetry from individual and mixed Fc and Fc+ conditions at the GC electrode was also a function of concentration. Double layer capacitance values increased significantly with the concentration of Fc and FcPF6 or FcBF4 when species were studied individually or simultaneously, but had a larger magnitude under conditions where both species were present. Variation in the structure of the ILs and hence mobilities of the ionic species, when Fc and FcPF6 or FcBF4 are simultaneously present, is considered to be the origin of the nonadditivity of the Faradaic currents and variation in capacitance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unexpected nonadditivity of currents encountered in the electrochemistry of mixtures of ferrocene (Fc) and cobaltocenium cation (Cc+) as the PF6 - salt has been investigated by direct current (dc) and Fourier-transformed alternating current (ac) cyclic voltammetry in two aprotic (1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate) and three protic (triethylammonium formate, bis(2-hydroxyethyl)ammonium acetate, and triethylammonium acetate) ionic liquids (ILs). The voltammetry of the individual Fc0/+ and Cc+/0 couples always exhibits near-Nernstian behavior at glassy carbon and gold electrodes. As expected for an ideal process, the reversible formal potentials and diffusion coefficients at 23 ( 1 °C in each IL determined from measurement on individual Fc and Cc+ solutions were found to be independent of electrode material, concentration, and technique used for the measurement. However, when Fc and Cc+ were simultaneously present, the dc and ac peak currents per unit concentration for the Fc0/+ and Cc+/0 processes were found to be significantly enhanced in both aprotic and protic ILs. Thus, the apparent diffusion coefficient values calculated for Fc and Cc+ were respectively found to be about 25 and 35% larger than those determined individually in the aprotic ILs. A similar change in the Fc0/+ mass transport characteristics was observed upon addition of tetrabutylammonium hexafluorophosphate (Bu4NPF6), and the double layer capacitance also varied in distinctly different ways when Fc and Cc+ were present individually or in mixtures. Importantly, the nonadditivity of Faradaic current is not associated with a change in viscosity or from electron exchange as found when some solutes are added to ILs. The observation that the 1H NMR T1 relaxation times for the proton resonance in Cc+ also are modified in mixed systems implies that specific interaction with aggregates of the constituent IL ionic species giving rise to subtle structural changes plays an important role in modifying the mass transport, double layer characteristics, and dynamics when solutes of interest in this study are added to ILs. Analogous voltammetric changes were not observed in studies in organic solvent media containing 0.1 M added supporting electrolyte. Implications of the nonadditivity of Faradaic and capacitance terms in ILs are considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A polyterthiophene (PTTh)/multi-walled carbon nanotube (CNT) composite was synthesised by in situ chemical polymerisation and used as an active cathode material in lithium cells assembled with an ionic liquid (IL) or conventional liquid electrolyte, LiBF4/EC–DMC–DEC. The IL electrolyte consisted of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) containing LiBF4 and a small amount of vinylene carbonate (VC). The lithium cells were characterised by cyclic voltammetry (CV) and galvanostatic charge/discharge cycling. The specific capacity of the cells with IL and conventional liquid electrolytes after the 1st cycle was 50 and 47 mAh g−1 (based on PTTh weight), respectively at the C/5 rate. The capacity retention after the 100th cycle was 78% and 53%, respectively. The lithium cell assembled with a PTTh/CNT composite cathode and a non-flammable IL electrolyte exhibited a mean discharge voltage of 3.8 V vs Li+/Li and is a promising candidate for high-voltage power sources with enhanced safety.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small-molecule nonvolatile additives based on ionic liquids (IL) as electrical conductivity enhancer in Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) was studied. Ionic liquids were investigated in the synthesis of self-assembled, highly organized hybrid nanostructures due to their ability as supramolecular solvents. Different percentage of five ionic liquids, such as 1-butyl-3-methylimidazolium tetrafluoroborate (bmim) F 4 and 1-butyl-3-methylimidazolium bromide (bmim)Br were added to a PEDOT:PSScommercial dispersion. Films of pure PEDOT:PSS showed an average conductivity of 14 S cm-1, which corresponded to the value range given by the supplier. AFM images showed that IL induced the formation of a three-dimensional conducting network with smaller PEDOT domains. The ionic character of the films was significantly increased because of the presence of ionic liquids, which can be used effectively in optoelectronic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elucidating the rate and geometry of molecular dynamics is particularly important for unravelling ion-conduction mechanisms in electrochemical materials. The local molecular motions in the plastic crystal 1-ethyl-1-methylpyrrolidinium tetrafluoroborate ([C2 mpyr][BF4 ]) are studied by a combination of quantum chemical calculations and advanced solid-state nuclear magnetic resonance spectroscopy. For the first time, a restricted puckering motion with a small fluctuation angle of 25° in the pyrrolidinium ring has been observed, even in the low-temperature phase (-45 °C). This local molecular motion is deemed to be particularly important for the material to maintain its plasticity, and hence, its ion mobility at low temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Full conformational and energy explorations are conducted on an organic ionic plastic crystal, 1-ethyl-1-methylpyrrolidium tetrafluoroborate [C2 mpyr][BF4 ]. The onsets of various stages of dynamic behaviour, which appear to account for low-temperature solid-solid phase transitions, are investigated by using quantum-chemical simulations. It is suggested that pseudorotation of the pyrrolidine ring occurs in the first instance; the partial rotation of the entire cation subsequently occurs and may be accompanied by reorientation of the ethyl chain as the temperature increases further. A cation-anion configuration, whereby BF4 (-) interacts with the C2 mpy cation from the side of the ring, is the most likely structure in the low-temperature phase IV region. These interpretations are supported by (13) C nuclear magnetic resonance chemical-shift analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here, we report water-soluble complexes of an acrylamide copolymer and ionic liquids for inhibiting shale hydration. The copolymer, denoted as PAAT, was synthesised via copolymerisation of acrylamide (AM), acrylic acid (AA) and N,N-diallyl-4-methylbenzenesulfonamide (TCDAP), and the ionic liquids used were 3-methyl imidazoliumcation-based tetrafluoroborates. X-ray diffraction showed that compared with commonly used KCl, the water-soluble complex of PAAT with 2 wt% ionic liquid 1-methyl-3-H-imidazolium tetrafluoroborate (HmimBF4) could remarkably reduce the d-spacing of sodium montmorillonite in water from 19.24 to 13.16 Å and effectively inhibit clay swelling. It was also found that the PAAT-HmimBF4 complex with 2 wt% HmimBF4 could retain 75% of the shale indentation hardness and increase the anti-swelling ratio to 85%. 13C NMR revealed that there existed interactions between PAAT and HmimBF4. Moreover, the thermal stability of the PAAT-HmimBF4 complex is superior to PAAT, suggesting that this water-soluble complex can be used to inhibit clay and shale hydration in high-temperature oil and gas wells.