998 resultados para test de elementos incompletos
Resumo:
Los accidentes con implicación de autocares en los que se producen vuelcos ponen de manifiesto la especial agresividad de los mismos, como lo confirman las estadísticas. Como medida para mejorar la seguridad de los Vehículos de Grandes Dimensiones para el Transporte de Pasajeros (V.G.D.T.P.) frente a vuelco fue aprobado por las Naciones Unidas el Reglamento Nº 66 de Ginebra. Este reglamento establece los requisitos mínimos que las estructuras de los vehículos de grandes dimensiones deben cumplir con respecto a vuelco. El reglamento 66 ha supuesto un paso adelante muy importante en relación con la seguridad de los autocares, puesto que especifica por primera vez requerimientos estructurales a este tipo de vehículos, y en general ha supuesto una mejora del vehículo . Por otro lado, a consecuencia de la obligatoriedad de instalación de cinturones de seguridad, existe una unión entre pasajeros y vehículo, pero como no se trata de una unión rígida, hay que contemplar el porcentaje de la masa de los ocupantes que influye en la absorción de energía de la estructura. Además la retención de los ocupantes con cinturones de seguridad influye en la energía a absorber por la estructura del vehículo en dos aspectos, por un lado aumenta la masa del vehículo y en el otro se incrementa la altura el centro de gravedad. Esta situación a conducido a elaborar por parte de las Naciones Unidas la revisión 01 del Reglamento 66, en el que se considera que el 50 % de la masa total de los pasajeros posee una unión rígida con la estructura del vehículo, y por lo tanto debe ser tenida en cuenta si el vehículo posee sistemas de retención. En la situación actual, con limitaciones de peso del vehículo y peso por eje, los elementos de confort, seguridad y espacio para maleteros contribuyen a aumentar el peso del vehículo. Esto unido a la dificultad de introducción de cambios radicales en la concepción actual de fabricación de este tipo de vehículos por suponer unas pérdidas importantes para los fabricantes existentes, tanto en su conocimiento del producto como en su metodología de proceso, conlleva la necesidad cada vez más agobiante de analizar y evaluar otras alternativas estructurales que sin suponer grandes revoluciones a los productos actualmente en fabricación los complementen permitiendo adaptarse a los nuevos requerimientos en seguridad. Recientes desarrollos en la relación costo-beneficio de los procesos para la producción de materiales celulares metálicos de baja densidad, tales como las espumas metálicas, los posiciona como una alternativa de especial interés para la aplicación como elementos de absorción de energía para reforzar estructuras. El relleno con espumas metálicas puede ser más eficiente en términos de optimización de peso comparado con el aumento de espesor de los perfiles estructurales, dado que la absorción de energía se produce en una fracción relativamente pequeña de los perfiles, en las denominadas rótulas plásticas. La aplicación de espumas de relleno metálicas en estructuras de vehículos se está empezando a emplear en determinadas zonas de los vehículos de turismo, siendo totalmente novedosa cualquier intento de aplicación en estructuras de autobuses y autocares. Conforme a lo expuesto, y con el objeto de resolver estos problemas, se ha elaborado el presente trabajo de tesis doctoral, cuyos objetivos son: -Desarrollar un modelo matemático, que permita simular el ensayo de vuelco, considerando la influencia de los ocupantes retenidos con cinturones de seguridad para evaluar su influencia en la absorción de energía de la estructura. -Validar el modelo matemático de vuelco de la estructura mediante ensayos de secciones representativas de la estructura del vehículo y mediante el ensayo de un vehículo completo. -Realizar un estudio de las propiedades de las espumas metálicas que permitan incorporarlas como elemento de absorción de energía en el relleno de componentes de la superestructura de autobuses y autocares. -Desarrollar un modelo matemático para evaluar el aporte del relleno de espuma metálica en la absorción de energía ante solicitaciones por flexión estática y dinámica en componentes de la superestructura de autobuses o autocares. -Realizar un programa de ensayos a flexión estáticos y dinámicos para validar el modelo matemático del aporte del relleno de espuma metálica sobre componentes de la superestructura de autobuses y autocares. . -Incorporar al modelo matemático de vuelco de la estructura, los resultados obtenidos sobre componentes con relleno de espuma metálica, para evaluar el aporte en la absorción de energía. -Validar el modelo de vuelco de la estructura del autobús o autocar con relleno de espuma metálica, mediante ensayos de secciones de carrocería. ABSTRACT Accidents involving buses in which rollovers occur reveal the special aggressiveness thereof, as the statistics prove. As a measure to improve the safety of large vehicles for the transport of passengers to rollover, Regulation 66 of Geneva was approved by the United Nations. This regulation establishes the minimum requirements that structures of large vehicles must comply with respect to rollovers. The regulation 66 has been a major step forward in relation to the safety of coaches, since it specifies structural requirements to such vehicles and has been an improvement for the vehicle. In turn, as a result of compulsory installation of safety belts, there is contact between passengers and vehicle, but as it is not a rigid connection we must contemplate the percentage of the mass of the occupants that impacts on the energy absorption of the structure. Thus, the passengers’ restraining modifies the energy to absorb by the vehicle in two different aspects: On the one hand, it increases the vehicle weight and on the other the height of the center of gravity. This circumstance has taken the United Nations to elaborate Revision 01 of Regulation 66, in which it is considered that the 50 percent of passengers’ mass has a rigid joint together with the vehicle structure and, therefore, the passengers’ mass mentioned above should be highly considered if the vehicle has seat belts. In the present situation, in which limitations in vehicle weight and weight in axles are stricter, elements of comfort, safety and space for baggage are contributing to increase the weight of the vehicle. This coupled with the difficulty of introducing radical changes in the current conception of manufacturing such vehicles pose significant losses for existing manufacturers, both in product knowledge and process methodology, entails the overwhelming need to analyze and evaluate other structural alternatives without assuming relevant modifications on the products manufactured currently allowing them to adapt to the new safety requirements. Recent developments in cost-benefit processes for the production of metallic foams of low density, such as metal foams, place them as an alternative of special interest to be used as energy absorbers to strengthen structures. The filling with metal foams can be more efficient in terms of weight optimization compared with increasing thickness of the structural beams, since the energy absorption occurs in a relatively small fraction of the beams, called plastic hinges. The application of metal filling foams in vehicle structures is beginning to be used in certain areas of passenger cars, being an innovative opportunity in structures for application in buses and coaches. According to the mentioned before, and in order to come forward with a solution, this doctoral thesis has been prepared and its objectives are: - Develop a mathematical model to simulate the rollover test, considering the influence of the occupants held with seat belts to assess their influence on energy absorption structure. - Validate the mathematical model of the structure rollover by testing representative sections of the vehicle structure and by testing a complete vehicle. - Conduct a study of the properties of metal foams as possible incorporation of energy absorbing element in the filler component of the superstructure of buses and coaches. - Elaborate a mathematical model to assess the contribution of the metal foam filling in absorbing energy for static and dynamic bending loads on the components of buses or coaches superstructure. - Conduct a static and dynamic bending test program to validate the mathematical model of contribution of metal foam filling on components of the superstructure of buses and coaches bending. - To incorporate into the mathematical model of structure rollover, the results obtained on components filled with metal foam, to evaluate the contribution to the energy absorption. - Validate the rollover model structure of the bus or coach filled with metal foam through tests of bay sections. The objectives in this thesis have been achieved successfully. The contribution calculation model with metal foam filling in the vehicle structure has revealed that the filling with metal foam is more efficient than increasing thickness of the beams, as demonstrated in the experimental validation of bay sections.
Resumo:
El vidrio se trata de un material muy apreciado en la arquitectura debido a la transparencia, característica que pocos materiales tienen. Pero, también es un material frágil, con una rotura inmediata cuando alcanza su límite elástico, sin disponer de un período plástico, que advierta de su futura rotura y permita un margen de seguridad. Por ambas razones, el vidrio se ha utilizado en arquitectura como elemento de plementería o relleno, desde tiempos antiguos, pero no como elemento estructural o portante, pese a que es un material interesante para los arquitectos para ese uso, por su característica de transparencia, ya que conseguiría la desmaterialización visual de la estructura, logrando espacios más ligeros y livianos. En cambio, si se tienen en cuenta las propiedades mecánicas del material se puede comprobar que dispone de unas características apropiadas para su uso estructural, ya que su Módulo elástico es similar al del aluminio, elemento muy utilizado en la arquitectura principalmente en las fachadas desde los últimos años, y su resistencia a compresión es muy superior incluso al hormigón armado; aunque su principal problema es su resistencia a tracción que es muy inferior a su resistencia a compresión, lo que penaliza su resistencia a flexión. En la actualidad se empieza a utilizar el vidrio como elemento portante o estructural, pero debido a su peor resistencia a flexión, se utilizan con grandes dimensiones que, a pesar de su transparencia, tienen una gran presencia. Por ello, la presente investigación pretende conseguir una reducción de las secciones de estos elementos estructurales de vidrio. Entonces, para el desarrollo de la investigación es necesario responder a una serie de preguntas fundamentales, cuyas respuestas serán el cuerpo de la investigación: 1. ¿Cuál es la finalidad de la investigación? El objetivo de esta investigación es la optimización de elementos estructurales de vidrio para su utilización en arquitectura. 2. ¿Cómo se va a realizar esa optimización? ¿Qué sistemas se van a utilizar? El sistema para realizar la optimización será la pretensión de los elementos estructurales de vidrio 3. ¿Por qué se va a utilizar la precompresión? Porque el vidrio tiene un buen comportamiento a compresión y un mal comportamiento a tracción lo que penaliza su utilización a flexión. Por medio de la precompresión se puede incrementar esta resistencia a tracción, ya que los primeros esfuerzos reducirán la compresión inicial hasta comenzar a funcionar a tracción, y por tanto aumentará su capacidad de carga. 4. ¿Con qué medios se va a comprobar y justificar ese comportamiento? Mediante simulaciones informáticas con programas de elementos finitos. 5. ¿Por qué se utilizará este método? Porque es una herramienta que arroja ventajas sobre otros métodos como los experimentales, debido a su fiabilidad, economía, rapidez y facilidad para establecer distintos casos. 6. ¿Cómo se garantiza su fiabilidad? Mediante el contraste de resultados obtenidos con ensayos físicos realizados, garantizando de ésta manera el buen comportamiento de los programas utilizados. El presente estudio tratará de responder a todas estas preguntas, para concluir y conseguir elementos estructurales de vidrio con secciones más reducidas gracias a la introducción de la precompresión, todo ello a través de las simulaciones informáticas por medio de elementos finitos. Dentro de estas simulaciones, también se realizarán comprobaciones y comparaciones entre distintas tipologías de programas para comprobar y contrastar los resultados obtenidos, intentando analizar cuál de ellos es el más idóneo para la simulación de elementos estructurales de vidrio. ABSTRACT Glass is a material very appreciated in architecture due to its transparency, feature that just a few materials share. But it is also a brittle material with an immediate breakage when it reaches its elastic limit, without having a plastic period that provides warning of future breakage allowing a safety period. For both reasons, glass has been used in architecture as infill panels, from old times. However, it has never been used as a structural or load‐bearing element, although it is an interesting material for architects for that use: because of its transparency, structural glass makes possible the visual dematerialization of the structure, achieving lighter spaces. However, taking into account the mechanical properties of the material, it is possible to check that it has appropriate conditions for structural use: its elastic modulus is similar to that of aluminium, element widely used in architecture, especially in facades from recent years; and its compressive strength is much higher than even the one of concrete. However, its main problem consists in its tensile strength that is much lower than its compressive strength, penalizing its resistance to bending. Nowadays glass is starting to be used as a bearing or structural element, but due to its worse bending strength, elements with large dimensions must be used, with a large presence despite its transparency. Therefore this research aims to get smaller sections of these structural glass elements. For the development of this thesis, it is necessary to answer a number of fundamental questions. The answers will be the core of this work: 1. What is the purpose of the investigation? The objective of this research is the optimization of structural glass elements for its use in architecture. 2. How are you going to perform this optimization? What systems will be implemented? The system for optimization is the pre‐stress of the structural elements of glass 3. Why are you going to use the pre‐compression? Because glass has a good resistance to compression and a poor tensile behaviour, which penalizes its use in bending elements. Through the pre‐compression it is possible to increase this tensile strength, due to the initial tensile efforts reducing the pre‐stress and increasing its load capacity. 4. What are the means that you will use in order to verify and justify this behaviour? The means are based on computer simulations with finite element programs (FEM) 5. Why do you use this method? Because it is a tool which gives advantages over other methods such as experimental: its reliability, economy, quick and easy to set different cases. 6. How the reliability is guaranteed? It’s guaranteed comparing the results of the simulation with the performed physical tests, ensuring the good performance of the software. This thesis will attempt to answer all these questions, to obtain glass structural elements with smaller sections thanks to the introduction of the pre‐compression, all through computer simulations using finite elements methods. In these simulations, tests and comparisons between different types of programs will also be implemented, in order to test and compare the obtained results, trying to analyse which one is the most suitable for the simulation of structural glass elements.
Resumo:
En los últimos años, podemos darnos cuenta de la importancia que tienen las nuevas aplicaciones de vidrio especialmente en edificios turísticos donde el vértigo juega un papel importante en la visita. Sin embargo los sistemas constructivos no tienen un especial interés porque el vidrio laminado está siempre soportado por otro elemento de acero o incluso vidrio en forma de retícula. En la presente tesis voy a desarrollar una nueva solución de elemento autoportante de vidrio de gran tamaño haciendo seguro el uso del elemento para andar en el aire. El sueño de muchos arquitectos ha sido diseñar un edificio completamente transparente y a mí me gustaría contribuir a este sueño empezando a estudiar un forjado de vidrio como elemento estructural horizontal y para ello debemos cumplir requerimientos de seguridad. Uno de los objetivos es lograr un elemento lo más transparente y esbelto posible para el uso de pasarelas en vestíbulos de edificios. Las referencias construidas son bien conocidas, pero por otro lado Universidades europeas estudian continua estudiando el comportamiento del vidrio con diferentes láminas, adhesivos, apilados, insertos, sistemas de laminado, pretensado, pandeo lateral, seguridad post-rotura y muchos más aspectos necesarios. La metodología llevada a cabo en esta tesis ha sido primeramente diseñar un elemento industrial prefabricado horizontal de vidrio teniendo en cuenta todos los conceptos aprendidos en el estado del arte y la investigación para poder predimensionar el elemento. El siguiente paso será verificar el modelo por medio de cálculo analítico, simulación de elementos finitos y ensayos físicos. Para realizar los ensayos hay un paso intermedio teniendo que cambiar la hipótesis de carga uniforme a carga puntal para realizar el ensayo de flexión a 4 puntos normalizado y además cambiar a escala 1:2 para adaptarse al espacio de ensayo y ser viable económicamente. Finalmente compararé los resultados de tensión y deformación obtenidos por los tres métodos para extraer conclusiones. Sin embargo el problema de la seguridad no ha concluido, tendré que demostrar que el sistema es seguro después de que se produzca la rotura y para ello sólo dispongo de los ensayos como medio de demostración. El diseño es el resultado de la evolución de una viga tipo “I”; cuando es pretensada para obtener más resistencia, aparece el problema de pandeo lateral y éste es solucionado con una viga con sección en “T” cuya unión es resuelta con un cajeado longitudinal en la parte inferior del elemento horizontal. Las alas de éste crecen para recoger las cargas superficiales creando a su vez un punto débil en la unión que a su vez se soluciona duplicando la sección “TT” y haciendo trabajar dicho tablero de forma tan óptima como una viga continua. Dicha sección en vidrio como un único elemento pretensado es algo inédito. Además he diseñado unas escuadras metálicas en los extremos de los nervios como apoyo y placa de pretensión, así como una hendidura curva en el centro de los nervios para alojar los tirantes de acero de modo que al pretensar el tirante la placa corrija al menos la deformación por peso propio. Realizados los cambios geométricos de escala y las simplificaciones en el laminado y el adhesivo se programan la extracción de resultados desde 3 estadios diferentes: Sin pretensión y con pretensión de 750 Kg y de 1000Kg en cada nervio. Por cada estadio y por cada uno de los métodos, cálculo, simulación y ensayos, se extraen los datos de deformación y tensión en el punto medio de un nervio con el objetivo de hacer una comparación de resultados para obtener unas conclusiones, siempre en el campo de la elasticidad. Posteriormente incrementaré la carga hasta el momento de la rotura de la placa y después hasta el colapso teniendo en cuenta el tiempo y demostrando una rotura segura. El vidrio no tendrá un comportamiento plástico pero habrá sido controlado su comportamiento frágil manteniendo una carga y una deformación aceptable. ABSTRACT Over the past few years we have realized the importance of the new technologies regarding the application of glass in new buildings, especially those touristic places were the views and the heights are the reason of the visit. However, the construction systems of these glass platforms are not usually as interesting, because the laminated glass is always held by another steel substructure or even a grid-formed glass element. Throughout this thesis I am going to develop a new solution of a self-bearing element with big dimensions made out of glass, ensuring a safe solution to use as an element to walk on the air. The dream of many architects has been to create a building completely transparent, and I would like to contribute to this idea by making a glass slab as a horizontal structural element, for which we have to meet the security requirements. One of the goals is to achieve an element as transparent and slim as possible for the use in walkways of building lobbies. The glass buildings references are well known, but on the other hand the European Universities study the behaviour of the glass with different interlayers, adhesives, laminating systems, stacking, prestressed, buckling, safety, breakage and post-breakage capacity; and many other necessary aspects. The methodology followed in this thesis has been to first create a horizontal industrial prefabricated horizontal element of glass, taking into account all the concepts learned in the state of art and the investigation to be able to predimension this element. The next step will be to verify this model with an analytic calculus, a finite element modelling simulation and physical tests. To fulfil these tests there is an intermediate step, having to change the load hypothesis from a punctual one to make the test with a four points normalized deflexion, and also the scale of the sample was changed to 1:2 to adapt to the space of the test and make it economically possible. Finally, the results of tension and deformation obtained from the three methods have been compared to make the conclusions. However, the problem with safety has not concluded yet, for I will have to demonstrate that this system is safe even after its breakage, for which I can only use physical tests as a way of demonstration. The design is the result of the evolution of a typical “I” beam, which when it is prestressed to achieve more resistance, the effect of buckling overcomes, and this is solved with a “T” shaped beam, where the union is solved with a longitudinal groove on the inferior part of the horizontal element. The boards of this beam grow to cover the superficial loads, creating at the same time a weak point, which is solved by duplicating the section “TT” and therefore making this board work as optimal as a continuous beam. This glass section as a single prestressed element is unique. After the final design of the “π” glass plate was obtained and the composition of the laminated glass and interlayers has been predimensioned, the last connection elements must be contemplated. I have also designed a square steel shoe at the end of the beams, which will be the base and the prestressed board, as well as a curved slot in the centre of the nerves to accommodate the steel braces so that when this brace prestresses the board, at least the deformation due to its self-weight will be amended. Once I made the geometric changes of the scale and the simplifications on the laminating and the adhesive, the extraction on results overcomes from three different stages: without any pretension, with a pretension of 750 kg and with a pretension of 1000 kg on each rib. For each stage and for each one of the methods, calculus, simulation and tests, the deformation datum were extracted to obtain the conclusions, always in the field of the elasticity. Afterwards, I will increase the load until the moment of breakage of this board, and then until the collapse of the element, taking into account the time spent and demonstrating a safe breakage. The glass will not have a plastic behaviour, but its brittle behaviour has been controlled, keeping an acceptable load and deflection.
Resumo:
Os cães, por fatores diversos, acabam por apresentar dentes fraturados com ou sem exposição de polpa. Estas fraturas basicamente são identificadas como fraturas recuperáveis não complicadas, recuperáveis complicadas ou irrecuperáveis. As fraturas recuperáveis (localizadas apenas no esmalte e dentina) são tratadas com dentística restauradora. As recuperáveis complicadas (com lesões em esmalte, dentina e exposição do canal radicular) passam por tratamento endodôntico, podendo ser seguidas de restaurações metálicas. Os dentes mais comumente acometidos são os dentes caninos, superiores ou inferiores. Este trabalho em dentes artificiais simulando considerável destruição de sua porção coronal objetivou testar, após a adaptação da restauração metálica fundida, a resistência às fraturas no dente canino. Os dentes artificiais foram padronizados com uma técnica de replicação de raízes artificiais em molde de resina acrílica quimicamente ativada. Oitenta réplicas iguais de resina composta fotopolimerizável, padronizadas em tamanho e forma, foram construídas a partir desta técnica. Antes da reconstrução protética, aplicou-se o tratamento endodôntico, desobturação, preparo do canal radicular e moldagem. Proteticamente, um pino intrarradicular reto e outro curvo, ambos com núcleo para sustentar a coroa metálica fundida foram cimentados na porção coronal de cada raiz-réplica. Os núcleos e coroa metálica foram ambos ferulados ou estojados. Avaliou-se os dois tipos de restauração com pino intrarradicular curvos ou retos cimentados com cimento de fosfato de zinco ou resinoso para identificar o melhor conjunto restaurador. Os testes de resistência biomecânica de 80 raízes-réplicas foram divididos em 4 grupos com 20 corpos de prova para cada um dos grupos. Grupo 1: das raízes-réplicas com pino intrarradicular curvo cimentados com cimento resinoso. Grupo 2: das raízes-réplicas com pino intrarradicular curvo cimentados com cimento de fosfato de zinco. Grupo 3: das raízes-réplicas com pino intrarradicular reto cimentados com cimento resinoso. Grupo 4: das raízes-réplicas com pino intrarradicular reto cimentados com cimento de fosfato de zinco. Estes grupos foram submetidos a teste de força com pré-carga de 1,5 N, com velocidade de avanço constante de 0,05 mm por minuto em ponto pré- determinado (mésio-lateral vestibularizada) até ocorrência de fratura do conjunto ou parte dele em uma Máquina Universal Kratos. Com a avaliação biomecânica e estudo estatístico de Kruskall-Wallis, identificou-se que os dados obtidos não seguiram distribuição normal. Esta diferença mostrou-se com o p<0,05 na interpretação do teste. No caso de dados não paramétricos o post-hoc do Kruskal-Wallis foi o teste de U de Mann-Withney. Paralelamente, um estudo com análise de elementos finitos comparou os resultados obtidos. Não houve diferença significativa sobre o tipo de cimento utilizado ou que favorecesse o uso do pino reto ou do pino curvo, recaindo a escolha para o operador decidir de acordo com a melhor indicação para cada caso clínico
Resumo:
En ese trabajo se estudia la concentración de elementos traza tóxicos en los depósitos de lodos (relaves) abandonados por la industria minera en Almería (España), los suelos del entorno próximo y las plantas que los colonizan y representan una vía de incorporación de dichos elementos en la cadena trófica. La industria minera antigua dejó toda una serie de instalaciones abandonadas en diferentes zonas de Andalucía, entre las que destacan por presentar altos contenidos en metales, los depósitos de residuos en forma de lodos generados en el proceso de flotación. En este estudio se trata el caso concreto de los depósitos de lodos de Mina La Solana (Almócita, Almería), donde se ha realizado una caracterización geoquímica de los depósitos y de los suelos de su entorno, en función al contenido en algunos elementos traza. Se han caracterizado muestras de las plantas que enraízan en dichos residuos para determinar la concentración que presentan en los mismos elementos traza. Los resultados muestran que los lodos presentan altos contenidos en Pb (concentración media 6800 ppm) y Zn (concentración media 22 000 ppm). Estos elementos no aparecen en forma soluble en agua, los test de lixiviación dan valores de concentración muy bajos (≤10 ppm de Pb y ≤ 2 ppm de Zn). De la misma forma se ha determinado una concentración alta de los mismos elementos en los restos vegetales, con un valor del Pb hasta los 210 ppm y 1300 ppm de Zn. Este hecho pone de manifiesto la capacidad de las plantas para alterar la movilidad de los elementos presentes en el sustrato donde enraízan estableciéndose una transferencia hacia la cadena trófica.
Resumo:
In a range test, one party holds a ciphertext and needs to test whether the message encrypted in the ciphertext is within a certain interval range. In this paper, a range test protocol is proposed, where the party holding the ciphertext asks another party holding the private key of the encryption algorithm to help him. These two parties run the protocol to implement the test. The test returns TRUE if and only if the encrypted message is within the certain interval range. If the two parties do not conspire, no information about the encrypted message is revealed from the test except what can be deduced from the test result. Advantages of the new protocol over the existing related techniques are that it achieves correctness, soundness, °exibility, high e±ciency and privacy simultaneously.