993 resultados para temporal pulse shape


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Previous research has indicated that temporal factors [specifically, the duration of interstimulus intervals (ISI) during a threat processing task] may influence the nature of processing biases exhibited in nonclinical populations with some degree of eating disorder psychopathology (Meyer et al., Int J Eat Disord, 27, 405-410, 2000). The current study aimed to test this hypothesis by investigating attentional biases for eating-disorder-relevant images and irrelevant visual images (animals) in patients with eating disorders (n = 23) and psychiatric (n = 19) and nonpsychiatric (n = 65) controls. Method: A dot probe task was modified from previous research (Shafran et al., Int Eat Disord, 40, 369-380, 2007), whereby an original ISI of 500 ms was increased to 2.000 ms. Results: Patients with an eating disorder continued to display a bias in the processing of weight stimuli. However, biases noted in previous research for shape and weight stimuli disappeared when the ISI duration was increased in this way. Conclusion: These findings highlight the importance of temporal factors in whether processing biases are displayed and may point to ways in which biases actually work in this population. However, further research is warranted. (C) 2008 by Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leaf expansion in the fast-growing tree,Populus × euramericana was stimulated by elevated [CO2] in a closed-canopy forest plantation, exposed using a free air CO2 enrichment technique enabling long-term experimentation in field conditions. The effects of elevated [CO2] over time were characterized and related to the leaf plastochron index (LPI), and showed that leaf expansion was stimulated at very early (LPI, 0–3) and late (LPI, 6–8) stages in development. Early and late effects of elevated [CO2] were largely the result of increased cell expansion and increased cell production, respectively. Spatial effects of elevated [CO2] were also marked and increased final leaf size resulted from an effect on leaf area, but not leaf length, demonstrating changed leaf shape in response to [CO2]. Leaves exhibited a basipetal gradient of leaf development, investigated by defining seven interveinal areas, with growth ceasing first at the leaf tip. Interestingly, and in contrast to other reports, no spatial differences in epidermal cell size were apparent across the lamina, whereas a clear basipetal gradient in cell production rate was found. These data suggest that the rate and timing of cell production was more important in determining leaf shape, given the constant cell size across the leaf lamina. The effect of elevated [CO2] imposed on this developmental gradient suggested that leaf cell production continued longer in elevated [CO2] and that basal increases in cell production rate were also more important than altered cell expansion for increased final leaf size and altered leaf shape in elevated [CO2].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a dynamic causal model that can explain context-dependent changes in neural responses, in the rat barrel cortex, to an electrical whisker stimulation at different frequencies. Neural responses were measured in terms of local field potentials. These were converted into current source density (CSD) data, and the time series of the CSD sink was extracted to provide a time series response train. The model structure consists of three layers (approximating the responses from the brain stem to the thalamus and then the barrel cortex), and the latter two layers contain nonlinearly coupled modules of linear second-order dynamic systems. The interaction of these modules forms a nonlinear regulatory system that determines the temporal structure of the neural response amplitude for the thalamic and cortical layers. The model is based on the measured population dynamics of neurons rather than the dynamics of a single neuron and was evaluated against CSD data from experiments with varying stimulation frequency (1–40 Hz), random pulse trains, and awake and anesthetized animals. The model parameters obtained by optimization for different physiological conditions (anesthetized or awake) were significantly different. Following Friston, Mechelli, Turner, and Price (2000), this work is part of a formal mathematical system currently being developed (Zheng et al., 2005) that links stimulation to the blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal through neural activity and hemodynamic variables. The importance of the model described here is that it can be used to invert the hemodynamic measurements of changes in blood flow to estimate the underlying neural activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The decomposition of soil organic matter (SOM) is temperature dependent, but its response to a future warmer climate remains equivocal. Enhanced rates of decomposition of SOM under increased global temperatures might cause higher CO2 emissions to the atmosphere, and could therefore constitute a strong positive feedback. The magnitude of this feedback however remains poorly understood, primarily because of the difficulty in quantifying the temperature sensitivity of stored, recalcitrant carbon that comprises the bulk (>90%) of SOM in most soils. In this study we investigated the effects of climatic conditions on soil carbon dynamics using the attenuation of the 14C ‘bomb’ pulse as recorded in selected modern European speleothems. These new data were combined with published results to further examine soil carbon dynamics, and to explore the sensitivity of labile and recalcitrant organic matter decomposition to different climatic conditions. Temporal changes in 14C activity inferred from each speleothem was modelled using a three pool soil carbon inverse model (applying a Monte Carlo method) to constrain soil carbon turnover rates at each site. Speleothems from sites that are characterised by semi-arid conditions, sparse vegetation, thin soil cover and high mean annual air temperatures (MAATs), exhibit weak attenuation of atmospheric 14C ‘bomb’ peak (a low damping effect, D in the range: 55–77%) and low modelled mean respired carbon ages (MRCA), indicating that decomposition is dominated by young, recently fixed soil carbon. By contrast, humid and high MAAT sites that are characterised by a thick soil cover and dense, well developed vegetation, display the highest damping effect (D = c. 90%), and the highest MRCA values (in the range from 350 ± 126 years to 571 ± 128 years). This suggests that carbon incorporated into these stalagmites originates predominantly from decomposition of old, recalcitrant organic matter. SOM turnover rates cannot be ascribed to a single climate variable, e.g. (MAAT) but instead reflect a complex interplay of climate (e.g. MAAT and moisture budget) and vegetation development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The toucan genus Ramphastos (Piciformes: Ramphastidae) has been a model in the formulation of Neotropical paleobiogeographic hypotheses. Weckstein (2005) reported on the phylogenetic history of this genus based on three mitochondrial genes, but some relationships were weakly supported and one of the subspecies of R. vitellinus (citreolaemus) was unsampled. This study expands on Weckstein (2005) by adding more DNA sequence data (including a nuclear marker) and more samples, including R v. citreolaemus. Maximum parsimony, maximum likelihood, and Bayesian methods recovered similar trees, with nodes showing high support. A monophyletic R. vitellinus complex was strongly supported as the sister-group to R. brevis. The results also confirmed that the southeastern and northern populations of R. vitellinus ariel are paraphyletic. X v. citreolaemus is sister to the Amazonian subspecies of the vitellinus complex. Using three protein-coding genes (COI, cytochrome-b and ND2) and interval-calibrated nodes under a Bayesian relaxed-clock framework, we infer that ramphastid genera originated in the middle Miocene to early Pliocene, Ramphastos species originated between late Miocene and early Pleistocene, and intra-specific divergences took place throughout the Pleistocene. Parsimony-based reconstruction of ancestral areas indicated that evolution of the four trans-Andean Ramphastos taxa (R. v. citreolaemus, R. a. swainsonii, R. brevis and R. sulfuratus) was associated with four independent dispersals from the cis-Andean region. The last pulse of Andean uplift may have been important for the evolution of R. sulfuratus, whereas the origin of the other trans-Andean Ramphastos taxa is consistent with vicariance due to drying events in the lowland forests north of the Andes. Estimated rates of molecular evolution were higher than the ""standard"" bird rate of 2% substitutions/site/million years for two of the three genes analyzed (cytochrome-b and ND2). (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Os objetivos deste trabalho foram registrar a abundância e a riqueza de Odonata associada a Eichhornia azurea, durante o período de março de 2004 a março de 2005, na Lagoa do Camargo, lateral ao Rio Paranapanema - São Paulo, após um pulso de inundação extraordinário e também investigar os fatores ambientais determinantes na distribuição da abundância de Odonata. As maiores abundâncias e riquezas ocorreram na estação seca, sendo que Coenagrionidae foi a família mais abundante e com a maior riqueza de gêneros de todo o período estudado. Esta alta abundância possivelmente ocorreu devido a seu comportamento, como postura dos ovos dentro do tecido das macrófitas e hábito escalador. Aeshnidae e Libellulidae apresentaram baixa abundância principalmente na estação seca. Os principais fatores ambientais que afetaram a distribuição da abundância de Odonata foram a temperatura de superfície da água, a pluviosidade e a biomassa de E. azurea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phenomenon of electrical degradation in ZnO varistors was studied by application of high-intensity current pulses. A wave shape of 8 X 20-mu-s and rectangular waves of 1 and 2 ms were used. The degradation was estimated by reference electric-field variation and by Schottky voltage barrier deformation. The results showed that current pulses reduce both the height and the width of the barrier voltage. It was also observed that the donor density N(d) did not change but the surface states density N(s) decreased with degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Jurumirim is a large tropical reservoir with remarkable spatial gradients. This structure seems to be determined by a longitudinal gradient in the trophic conditions along the main axis of the reservoir. Nutrient-rich waters enter from the main tributary river, Paranapanema, and towards the dam there is a lacustrine zone that is deeper and more oligotrophic. Additional variability is derived from two important lateral components: the entrance of the Taquari River, the second largest tributary, bringing waters with higher pH and alkalinity; and the Ribeirão das Posses arm, a sheltered bay where the hydrodynamic conditions promote a high growth of phytoplankton. However, such a spatial pattern is not static. It can become either more defined, during the dry season (late autumn and winter), or less evident, during the expansion of the lotic conditions in the rainy period (late spring and summer). Seasonal processes of stratification/destratification determine the temporal changes in the lacustrine zone but, unlike the upstream regions, the dam zone of the reservoir seems to be little affected by periodic pulses of modifications produced by intensive rains. The presence of extensive wetlands and oxbow lagoons in the mouth zones of the main rivers also constitutes an important source of spatial variability and should be considered in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this letter, a methodology is proposed for automatically (and locally) obtaining the shape factor c for the Gaussian basis functions, for each support domain, in order to increase numerical precision and mainly to avoid matrix inversion impossibilities. The concept of calibration function is introduced, which is used for obtaining c. The methodology developed was applied for a 2-D numerical experiment, which results are compared to analytical solution. This comparison revels that the results associated to the developed methodology are very close to the analytical solution for the entire bandwidth of the excitation pulse. The proposed methodology is called in this work Local Shape Factor Calibration Method (LSFCM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoassociation is a possible route for the formation of chemical bonds. In this process, the binding of colliding atoms can be induced by means of a laser field. Photoassociation has been studied in the ultracold regime and also with temperatures well above millikelvins in the thermal energy domain, which is a situation commonly encountered in the laboratory. A photoassociation mechanism can be envisioned based on the use of infrared pulses to drive a transition from free colliding atoms on the electronic ground state to form a molecule directly on that state. This work takes a step in this direction, investigating the laser-pulse-driven formation of heteronuclear diatomic molecules in a thermal gas of atoms including rotational effects. Based on the assumption of full system controllability, the maximum possible photoassociation yield is deduced. The photoassociation probability is calculated as a function of the laser parameters for different temperatures. Additionally, the photoassociation yield induced by subpicosecond pulses of a priori fixed shape is compared to the maximum possible yield.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The West Antarctic Peninsula (WAP) shelf experiences intense seasonal and interannual variability in phytoplankton production and particulate-organic-carbon flux to the seafloor. To explore the response of the megabenthic community to this production variability, we conducted video surveys of epibenthic megafauna at three stations on the WAP shelf in Nov-Dec 1999, Mar 2000, Jun 2000, Oct-Nov 2000, and Feb-Mar 2001. The epibenthic megafauna was dominated (>90%) by elasipod holothurians, irregular urchins and anthozoans, with total abundances ranging from 19 to 152 ind. 1 00 m(-2). The abundance of three of the dominant taxa (Protelpidia murrayi, Peniagone vignomi, and Amphipneustes spp.) varied significantly across seasons (p <0.05), although variations were not tightly correlated with the summer bloom cycle. The irregular urchins in the genus Amphipneustes varied 5-fold in abundance at single stations, with maximum densities (an average of 10.1 ind. 100 m(-2)) attained in Jun 2000. Abundances of the elasipod holothurians P. murrayi (1-121 ind. 100 m(-2)) and P. vignoni (0.7-27.5 ind. 100 m(-2)) fell within the range for elasipod holothurians from other bathyal regions measured using image analysis. The abundance of P. murrayi increased up to 6-fold from a single Jun-Oct recruitment pulse, while changes in the abundance of P. vignoni (over 2-fold higher in Feb-Mar 2001) apparently resulted from immigration during the presence of a 1-2 cm thick carpet of fresh phytocletritus. Based on the ratio of the number of fecal casts per individual, elasipod holothurians increased surface-deposit feeding rates by >= 2-fold while phytocletritus was present at the seafloor. Nonetheless, these surface-deposit feeders appeared to feed and egest sediments throughout the winter, which is consistent with year-round persistence of a labile food bank in surficial sediments on the deep WAP shelf.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A procedure has been proposed by Ciotti and Bricaud (2006) to retrieve spectral absorption coefficients of phytoplankton and colored detrital matter (CDM) from satellite radiance measurements. This was also the first procedure to estimate a size factor for phytoplankton, based on the shape of the retrieved algal absorption spectrum, and the spectral slope of CDM absorption. Applying this method to the global ocean color data set acquired by SeaWiFS over twelve years (1998-2009), allowed for a comparison of the spatial variations of chlorophyll concentration ([Chl]), algal size factor (S-f), CDM absorption coefficient (a(cdm)) at 443 nm, and spectral slope of CDM absorption (S-cdm). As expected, correlations between the derived parameters were characterized by a large scatter at the global scale. We compared temporal variability of the spatially averaged parameters over the twelve-year period for three oceanic areas of biogeochemical importance: the Eastern Equatorial Pacific, the North Atlantic and the Mediterranean Sea. In all areas, both S-f and a(cdm)(443) showed large seasonal and interannual variations, generally correlated to those of algal biomass. The CDM maxima appeared in some occasions to last longer than those of [Chl]. The spectral slope of CDM absorption showed very large seasonal cycles consistent with photobleaching, challenging the assumption of a constant slope commonly used in bio-optical models. In the Equatorial Pacific, the seasonal cycles of [Chl], S-f, a(cdm)(443) and S-cdm, as well as the relationships between these parameters, were strongly affected by the 1997-98 El Ni o/La Ni a event.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The occurrence of a weak auditory warning stimulus increases the speed of the response to a subsequent visual target stimulus that must be identified. This facilitatory effect has been attributed to the temporal expectancy automatically induced by the warning stimulus. It has not been determined whether this results from a modulation of the stimulus identification process, the response selection process or both. The present study examined these possibilities. A group of 12 young adults performed a reaction time location identification task and another group of 12 young adults performed a reaction time shape identification task. A visual target stimulus was presented 1850 to 2350 ms plus a fixed interval (50, 100, 200, 400, 800, or 1600 ms, depending on the block) after the appearance of a fixation point, on its left or right side, above or below a virtual horizontal line passing through it. In half of the trials, a weak auditory warning stimulus (S1) appeared 50, 100, 200, 400, 800, or 1600 ms (according to the block) before the target stimulus (S2). Twelve trials were run for each condition. The S1 produced a facilitatory effect for the 200, 400, 800, and 1600 ms stimulus onset asynchronies (SOA) in the case of the side stimulus-response (S-R) corresponding condition, and for the 100 and 400 ms SOA in the case of the side S-R non-corresponding condition. Since these two conditions differ mainly by their response selection requirements, it is reasonable to conclude that automatic temporal expectancy influences the response selection process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dispersal and recruitment are central processes that shape the geographic and temporal distributions of populations of marine organisms. However, significant variability in factors such as reproductive output, larval transport, survival, and settlement success can alter the genetic identity of recruits from year to year. We designed a temporal and spatial sampling protocol to test for genetic heterogeneity among adults and recruits from multiple time points along a similar to 400 km stretch of the Oregon (USA) coastline. In total, 2824 adult and recruiting Balanus glandula were sampled between 2001 and 2008 from 9 sites spanning the Oregon coast. Consistent with previous studies, we observed high mitochondrial DNA diversity at the cytochrome oxidase I locus (884 unique haplotypes) and little to no spatial genetic population structure among the 9 sites (Phi(ST) = 0.00026, p = 0.170). However, subtle but significant temporal shifts in genetic composition were observed among year classes (Phi(ST) = 0.00071, p = 0.035), and spatial Phi(ST) varied from year to year. These temporal shifts in genetic structure were correlated with yearly differences in the strength of coastal upwelling (p = 0.002), with greater population structure observed in years with weaker upwelling. Higher levels of barnacle settlement were also observed in years with weaker upwelling (p < 0.001). These data suggest the hypothesis that low upwelling intensity maintains more local larvae close to shore, thereby shaping the genetic structure and settlement rate of recruitment year classes.