988 resultados para tea tree oil
Resumo:
The effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree, Azadirachta indica, on the midgut cells of predatory larvae Ceraeochrysa claveri were analyzed. C. claveri were fed on eggs of Diatraea saccharalis treated with neem oil at a concentration of 0.5%, 1% and 2% during throughout the larval period. Light and electron microscopy showed severe damages in columnar cells, which had many cytoplasmic protrusions, clustering and ruptured of the microvilli, swollen cells, ruptured cells, dilatation and vesiculation of rough endoplasmic reticulum, development of smooth endoplasmic reticulum, enlargement of extracellular spaces of the basal labyrinth, intercellular spaces and necrosis. The indirect ingestion of neem oil with prey can result in severe alterations showing direct cytotoxic effects of neem oil on midgut cells of C. claveri larvae. Therefore, the safety of neem oil to non-target species as larvae of C. claveri was refuted, thus the notion that plants derived are safer to non-target species must be questioned in future ecotoxicological studies. © 2012 Elsevier Ltd.
Resumo:
The pupunha (Guilielma speciosa) is the fruit of a palm tree typical of the Brazilian Northern region, whose stem is used as a source of heart of palm. The fruit, which is about 65% pulp, is a source of oil and carotenes. In the present work, an analysis of the kinetics of supercritical extraction of oil from the pupunha pulp is presented. Carbon dioxide was used as solvent. The extractions were carried out at 25 MPa and 323 K and 30 MPa and 318 K. The chemical composition of the extracts in terms of fatty acids was determined by gas chromatography. The amount of oleic acid, a saturated fatty acid, in the CO2 extracts was larger than that in the extract obtained with hexane. The overall extraction curves were modeled using the single-parameter model proposed in the literature to describe the desorption of toluene from activated coal.
Resumo:
Amostras de óleo obtido do fruto do Buriti (Mauritia flexuosa L.) foram caracterizadas por espectroscopia de absorção e emissão. O espectro de absorção foi obtido no intervalo de 300 a 2000 nm, enquanto o espectro de emissão foi analisado entre 400 e 800 nm, onde observamos várias bandas. Para melhor entender a complexidade destes espectros, também obtivemos os espectros de absorção e emissão dos componentes majoritários do óleo de Buriti. Correlacionando estes dados, apresentamos uma discussão sobre a origem das bandas observadas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The production of sound, clean fruit is unquestionably one of the major problems facing the modern fruit grower. Culture may be neglected and pruning delayed for a time but the omission of sprays for even a single season demonstrates their absolute necessity. This applies equally to the commercial grower and to the farmer or gardener who has only a few trees. Spray materials, equipment, management, schedules, insect pests and orchard diseases are discussed in this 1928 extension circular.
Resumo:
Sugarcane (Saccharum spp.) and palm tree (Elaeis guianeensis) are crops with high biofuel yields, 7.6 m(3) ha (1) y(-)1 of ethanol and 4 Mg ha(-1) y(-1) of oil, respectively. The joint production of these crops enhances the sustainability of ethanol. The objective of this work was comparing a traditional sugarcane ethanol production system (TSES) with a joint production system (JSEB), in which ethanol and biodiesel are produced at the same biorefinery but only ethanol is traded. The comparison is based on ISO 14.040:2006 and ISO 14044:2006, and appropriate indicators. Production systems in Cerrado (typical savannah), Cerradao (woody savannah) and pastureland ecosystems were considered. Energy and carbon balances, and land use change impacts were evaluated. The joint system includes 100% substitution of biodiesel for diesel, which is all consumed in different cropping stages. Data were collected by direct field observation methods, and questionnaires applied to Brazilian facilities. Three sugarcane mills situated in Sao Paulo State and one palm oil refinery located in Para State were surveyed. The information was supplemented by secondary sources. Results demonstrated that fossil fuel use and greenhouse gas emissions decreased, whereas energy efficiency increased when JSEB was compared to TSES. In comparison with TSES, the energy balance of JSEB was 1.7 greater. In addition, JSEB released 23% fewer GHG emissions than TSES. The ecosystem carbon payback time for Cerrado, Cerradao, and Degraded Grassland of JSEB was respectively 4, 7.7 and -7.6 years. These are typical land use types of the Brazilian Cerrado region for which JSEB was conceived. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Reducing the gap between water-limited potential yield and actual yield in oil palm production systems through intensification is seen as an important option for sustainably increasing palm oil production. Simulation models can play an important role in quantifying water-limited potential yield, and therefore the scope for intensification, but no oil palm model exists that is both simple enough and at the same time incorporates sufficient plant physiological knowledge to be generally applicable across sites with different growing conditions. The objectives of this study therefore were to develop a model (PALMSIM) that simulates, on a monthly time step, the potential growth of oil palm as determined by solar radiation and to evaluate model performance against measured oil palm yields under optimal water and nutrient management for a range of sites across Indonesia and Malaysia. The maximum observed yield in the field matches the corresponding simulated yield for dry bunch weight with a RMSE of 1.7 Mg ha?1 year?1 against an observed yield of 18.8 Mg ha?1. Sensitivity analysis showed that PALMSIM is robust: simulated changes in yield caused by modifying the parameters by 10% are comparable to other tree crop model evaluations. While we acknowledge that, depending on the soils and climatic environment, yields may be often water limited, we suggest a relatively simple physiological approach to simulate potential yield, which can be usefully applied to high rainfall environments and is considered as a first step in developing an oil palm model that also simulates water-limited potential yield. To illustrate the application possibil- ities of the model, PALMSIM was used to create a potential yield map for Indonesia and Malaysia by sim- ulating the growth and yield at a resolution of 0.1?. This map of potential yield is considered as a first step towards a decision support tool that can identify potentially productive, but at the moment degraded sites in Indonesia and Malaysia. ?
Resumo:
Mary Cassatt; 3 ft. 3/8 in.x 2 ft. 1 3/4 in.; oil on canvas
Resumo:
Mary Cassatt; 2 ft. 1 15/32 in. x 3 ft. 7/32 in.; oil on canvas
Resumo:
Monoculture plantations of Pinus, Eucalyptus and Acacia have been established oil rainforest lands throughout the world. However, this type of reforestation generally supplies low quality timber and contributes to landscape simplification. Alternatives to exotic monoculture plantations are now beginning to gain momentum with farmers and landholders attempting to establish a variety of rainforest trees in small plantations. When compared to the well studied commercial species, knowledge concerning the growth and management of many of these rainforest species is in its infancy. To help expand this limited knowledge base an experimental plantation of 16 rainforest tree species in a randomised design was established near Mt. Mee, in south-eastern Queensland, Australia. Changes in growth, form (based on stem straightness, branch size and branchiness), crown diameters and leaf area of each species were examined over 5 years. Patterns of height growth were also measured monthly for 31 months. Species in this trial could be separated into three groups based on their overall growth after 5 years and their growth patterns. Early successional status, low timber density, high maximum photosynthetic rates and large total leaf areas were generally correlated to rapid height growth. Several species (including Araucaria cunninghamii, Elaeocarpus grandis, Flindersia brayleyana, Grevillea robusta and Khaya nyasica) had above average form and growth, while all species in the trial had considerable potential to have increased productivity through tree selection. As canopy closure occurred at the site between years four and five, growth increments declined. To reduce stand competition a number of different thinning techniques could be employed. However, simple geometric or productivity based thinnings appear to be inappropriate management techniques for this mixed species stand as they would either remove many of the best performing trees or nearly half the species in the trial. Alternatively, a form based thinning would maintain the site's diversity, increase the average form of the plantation and provide some productivity benefits.
Resumo:
The Neem tree, the oil of which has a long history of pesticide, fertilizer and medicinal use in India, has been studied extensively for its organic compounds. Here we present a physical, mineralogical and geochemical database resulting from the analyses of two Neem soil profiles (epipedons) in India. Neem tree derivatives are used in the manufacture of a variety of products, from anti-bacterial drugs and insecticides to fertilizers and animal feeds. A preliminary geochemical and mineralogical analysis of Neem soils is made to explore the potential for chemical links between Neem tree derivatives and soils. Physical soil characteristics, including colour, texture and clay mineralogy, suggest the two pedons formed under different hydrological regimes, and hence, are products of different leaching environments, one well-drained site, the other poorly drained. Geochemically, the two Neem soils exhibit similarities, with elevated concentrations of Th and rare earth elements. These elements are of interest because of their association with phosphates, especially monazite and apatite, and the potential link to fertilizer derivatives. Higher concentrations of trace elements in the soils may be linked to nutritional derivatives and to cell growth in the Neem tree.
Resumo:
Simarouba glauca, a non-edible oilseed crop native to South Florida, is gaining popularity as a feedstock for the production of biodiesel. The University of Agriculture Sciences in Bangalore, India has developed a biodiesel production model based on the principles of decentralization, small scales, and multiple fuel sources. Success of such a program depends on conversion efficiencies at multiple stages. The conversion efficiency of the field-level, decentralized production model was compared with the in-laboratory conversion efficiency benchmark. The study indicated that the field-level model conversion efficiency was less than that of the lab-scale set up. The fuel qualities and characteristics of the Simarouba glauca biodiesel were tested and found to be the standards required for fuel designation. However, this research suggests that for Simarouba glauca to be widely accepted as a biodiesel feedstock further investigation is still required.