991 resultados para swimming performance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

O principal objetivo deste estudo foi verificar o efeito do nível de performance aeróbia na relação entre os índices técnicos correspondentes à velocidade crítica (VC) e à velocidade máxima de 30 minutos (V30) em nadadores. Participaram deste estudo, 23 nadadores do gênero masculino com características antropométricas similares, divididos segundo o nível de performance aeróbia em grupo G1 (maior performance) (n = 13) e G2 (menor performance) (n = 10). Os indivíduos tinham pelo menos quatro anos de experiência no esporte e treinavam um volume semanal de 30.000 a 45.000m. A VC foi determinada através do coeficiente angular da regressão linear entre as distâncias (200 e 400m) e seus respectivos tempos. A V30 foi determinada através da máxima distância realizada em um teste de 30 minutos. Todas as variáveis foram determinadas no nado crawl. A VC foi significantemente maior do que a V30 no grupo G1 (1,30 ± 0,04 vs. 1,23 ± 0,06m.s-1) e no G2 (1,17 ± 0,08 vs. 1,07 ± 0,06m.s-1). As duas variáveis foram maiores no grupo G1. As taxas de braçada correspondentes à VC (TBVC) e à V30 (TBV30) obtidas nos grupos G1 (33,07 ± 4,34 vs. 31,38 ± 4,15 ciclos.min-1) e G2 (35,57 ± 6,52 vs. 33,54 ± 5,89 ciclos.min-1) foram similares entre si. A TBVC foi significantemente menor no grupo 1 do que no grupo 2, enquanto que a TBV30 não foi diferente entre os grupos. Os comprimentos de braçada correspondentes à VC (CBVC) e à V30 (CBV30) foram significantemente maiores no grupo G1 (2,41 ± 0,33 vs. 2,38 ± 0,30m.ciclo-1) do que no G2 (2,04 ± 0,43 vs. 1,97 ± 0,40m.ciclo-1), e similares entre si nos dois grupos. As correlações (r) entre a VC e a V30 e as variáveis técnicas correspondentes às duas velocidades foram significantes em todas as comparações (0,68 a 0,91). Portanto, a relação entre a velocidade e as variáveis técnicas correspondentes à VC e à V30 não é modificada pelo nível de performance aeróbia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O objetivo do presente estudo foi verificar a utilização da velocidade de 30 minutos (VT-30), freqüência de braçada (fB), comprimento de braçada (CB) e índice de braçada (IB), obtidos no teste T-30, como métodos não-invasivos para determinação da performance aeróbia e técnica de nadadores treinados. Catorze nadadores submeteram-se a três esforços de 400m (85, 90 e 100% do esforço máximo) para determinação da velocidade de limiar anaeróbio (VLan) correspondente à concentração fixa de 3,5mM de lactato e um esforço máximo de 30 minutos (VT-30). fB, CB e IB foram calculados nos 10m centrais da piscina (nado limpo) para o teste T-30 (fBT-30, CBT-30 e IBT-30) e progressivo. Através da relação entre VLan e parâmetros de braçada no teste progressivo, determinaram-se freqüência de braçada de limiar (fBLan), comprimento de braçada de limiar (CBLan) e índice de braçada de limiar (IBLan). O tempo para realizar 400m em máximo esforço foi considerado como parâmetro de performance (P400). Não foi encontrada diferença significativa entre VLan (1,29 ± 0,07m.s-1) e VT-30 (1,29 ± 0,08m.s-1), que ainda apresentaram alta correlação (r = 0,90). Os valores de fBLan (33,6 ± 4,14 ciclos/min) e fBT-30 (34,9 ± 3,53 ciclos/min) e de CBLan (2,09 ± 0,20m/ciclo) e CBT-30 (2,09 ± 0,20m/ciclo) também não foram significativamente diferentes. Correlações significativas (p < 0,05) também foram encontradas entre VT-30 e P400 (r = 0,95); fBLan e fBT-30 (r = 0,73); CBLan e CBT-30 (r = 0,89) e IBLan e IBT-30 (r = 0,94). Conclui-se que a VT30 se mostrou confiável para o monitoramento do treinamento, predição da performance e determinação de parâmetros relacionados à técnica de nadadores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to verify the correlation between the Wingate arm crank test outputs (peak power, mean power, and fatigue index), obtained on a specific ergometer, and the performance in crawl stroke swim sprints of 14, 25, 50, and 400 m. The experiment was conducted with 9 healthy male volunteers (18.1 +/- 2.2 years of age; 172 +/- 0.04 cm; 67.7 +/- 5.92 kg and 15.7 +/- 4.57% body fat). on determined days, all individuals were submitted to the Wingate arm crank test and crawl freestyle sprints of 14, 25, 50, and 400 m as they were timed with a stopwatch. The peak power, the mean power, and the fatigue index, which were obtained during the Wingate arm crank test, were not significantly correlated with the maximum swim velocities during the crawl free-style tests of 14 (r = 0.40; r = 0.64; r = 0.11), 25 (r = 0.28; r = 0.39; r = -0.27), 50 (r = 0.03; r = 0.09; r = -0.31), and 400 (r = -0.52; r = -0.37; r = -0.65) m respectively. Thus, it is possible to conclude that the Wingate arm crank test is not suitable to assess the anaerobic power of swimmers under the described experimental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several studies have demonstrated that caffeine improves endurance exercise performance but the mechanisms are not fully understood. Possibilities include increased free fatty acid (FFA) oxidation with consequent sparing of muscle glycogen as well as enhancement of neuromuscular function during exercise. The present study was designed to investigate the effects of caffeine on liver and muscle glycogen of 3-month old, male Wistar rats (250-300 g) exercising by swimming. Caffeine (5 mg/kg) dissolved in saline (CAF) or 0.9% sodium chloride (SAL) was administered by oral intubation (1 mu l/g) to fed rats 60 min before exercise. The rats (N = and-IO per group) swam bearing a load corresponding to 5% body weight for 30 or 60 min. FFA levels were significantly elevated to 0.475 +/- 0.10 mEq/l in CAF compared to 0.369 +/- 0.06 mEq/l in SAL rats at the beginning of exercise. During exercise, a significant difference in FFA levels between CAF and SAL rats was observed at 30 min (0.325 +/- 0.06 vs 0.274 +/- 0.05 mEq/l) but not at 60 min (0.424 +/- 0.13 vs 0.385 +/- 0.10 mEq/l). Blood glucose showed an increase due to caffeine only at the end of exercise (CAF = 142.1 +/- 27.4 and SAL = 120.2 +/- 12.9 mg/100 ml). No significant difference in liver or muscle glycogen was observed in CAF as compared to SAL rats, at rest or during exercise. Caffeine increased blood lactate only at the beginning of exercise (CAF = 2.13 +/- 0.2 and SAL = 1.78 +/- 0.2 mmol/l). These data indicate that caffeine (5 mg/kg) has no glycogen-sparing effect on rats exercising by swimming even though the FFA levels of CAF rats were significantly higher at the beginning of exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this study were to verify the effects of wet suits (WS) on the performance during 1500m swimming (V1500), on the velocity corresponding to the anaerobic threshold (VAT) and on the drag force (AD) as well as its coefficient (Cx). 19 swimmers randomly completed the following protocols on different days (with and without WS): 1) maximal performance of 1500m swimming; 2) VAT in field test, with fixed concentration of blood lactate (4 mM) and 3) determination of hydrodynamic indices (AD and Cx). The results demonstrated significant differences (p < 0.05) in the VAT (1.27±0.09; 1.21±0.06 m.s-1), and in the V1500 (1.21±0.08; 1.17±0.08 m.s-1), with and without WS, respectively. However the AD, and its Cx did not present significant differences (p>0.05) for the respective maximal speeds of swimming. In summary, we can conclude that WS allows swimmers to reach greater speeds in both, long- and short-course swims. This improvement can be related to the decrease of the AD, since with higher speeds (with WS) the subjects presented the same resistance, as they did when compared to speeds without a WS. Moreover, these data suggest that the methodology used in this study to determine the Cx is unable to detect the improvement caused by WS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to verify the correlation between the Wingate arm crank test outputs (peak power, mean power, and fatigue index), obtained on a specific ergometer, and the performance in crawl stroke swim sprints of 14, 25, 50, and 400 m. The experiment was conducted with 9 healthy male volunteers (18.1 ± 2.2 years of age; 172 ± 0.04 cm; 67.7 ± 5.92 kg and 15.7 ± 4.57% body fat). On determined days, all individuals were submitted to the Wingate arm crank test and crawl freestyle sprints of 14, 25, 50, and 400 m as they were timed with a stopwatch. The peak power, the mean power, and the fatigue index, which were obtained during the Wingate arm crank test, were not significantly correlated with the maximum swim velocities during the crawl freestyle tests of 14 (r = 0.40; r = 0.64; r = 0.11), 25 (r = 0.28; r = 0.39; r = -0.17), 50 (r = 0.03; r = 0.09; r = -0.31), and 400 (r = -0.52; r = -0.37; r = -0.65) m, respectively. Thus, it is possible to conclude that the Wingate arm crank test is not suitable to assess the anaerobic power of swimmers under the described experimental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to develop an experimental protocol for endurance swimming periodization training in rats similar to high performance training in humans, and compare it to continuous training. Three groups of male Wistar rats (90 days old) were allocated to Sedentary Control (SC); Continuous Training (CT); and Periodized Experimental Training (PET) groups. PET and CT trained 5 days/week, over five weeks, CT: continuous training supporting a 5% body mass (bm) load for 40 min/day; PET: training subdivided into basic, specific, and taper periods, with overload changed daily (volume-intensity, continuous, and interval training). Total training overload was quantified (% bm X exercise time in training session) and equalized for the two trained groups. Glucose ([ 3H]2-deoxyglucose) uptake, incorporation to glycogen (synthesis), glucose oxidation (CO 2 production), and lactate production from [U- 14C]glucose by soleus muscle strips incubated in presence of insulin (100μU/mL) were evaluated 48h after the last training session. The load equivalent at 5.5mM blood lactate concentration ([La-5.5]) was determined in the incremental test. Lactate production was similar in all groups. PET presented higher glucose uptake (59%) than SC, and higher glycogen synthesis (51 and 22%) and glucose oxidation (147 and 178%) than SC and CT, respectively. CT presented higher glycogen synthesis rates (23%) than SC. Load [La-5.5] was similar between trained groups and higher than SC. PET presented higher values for glucose metabolism than CT and SC. These results open up new perspectives for studying training methods used in high performance sport through swimming exercise in rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A swimming periodized experimental training model in rats in which different training protocols (TP) were classified in aerobic (A) and anaerobic (AN) intensity levels. The purpose of the present study was to verify if the classification of the TP used in the periodized training experimental model presented the blood lactate concentration [La] response adequate to the aerobic and anaerobic intensities levels. Twenty three male Wistar rats were divided into three groups. Two groups of swimming training (continuous, CT, n = 7, and periodized training, PET, n = 7) rats were evaluated during 5 weeks in eight different TP (TP-1 to TP-8) through the analysis of the [La] response. The third group was the sedentary control (SC, n = 9). The TP were classified in five intensity levels, three aerobic (A-1, A-2, A-3) and two anaerobic (AN-1, AN-2). Analysis of variance (ANOVA one-way, P<0.05) indicated significant differences in the [La] among the TP and among the five intensity levels. All TP of the A-2 and A-3 intensity levels differed from the A-1 and AN-1. The A-1 and AN-1 also differed among them. These findings demonstrate that the TP were classified properly at different levels of aerobic and anaerobic intensities, as based on the [La] response in a way similar to that of high performance swimming with humans. The results offer new perspectives for the study of exercise training in swimming rats at different levels intensity for performance or for health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to determine whether: i) tethered-swimming can be used to identify the asymmetry during front crawl swimming style; ii) swimmers that perform unilateral breathing present greater asymmetry in comparison to others that use bilateral breathing; iii) swimmers of best performance present smaller asymmetry than their counterparts; iv) repeated front crawl swimming movements influence body asymmetry. 18 swimmers were assessed for propulsive force parameters (peak force, mean force, impulse and rate of force development) during a maximal front crawl tethered-swimming test lasting 2 min. A factorial analysis showed that propulsive forces decreased at the beginning, intermediate and end of the test (p<0.05), but the asymmetries were not changed at different instants of the test. When breathing preference (uni- or bilateral) was analyzed, asymmetry remained unchanged in all force parameters (p>0.05). When performance was considered (below or above mean group time), a larger asymmetry was found in the sub-group of lower performance in comparison to those of best performance (p<0.05). Therefore, the asymmetries of the propulsive forces can be detected using tethered-swimming. The propulsive forces decreased during the test but asymmetries did not change under testing conditions. Although breathing preference did not influence asymmetry, swimmers with best performance were less asymmetric than their counterparts. © Georg Thieme Verlag KG Stuttgart New York.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to identify the boundary of submaximal speed zones (i.e., exercise intensity domains) between maximal aerobic speed (S-400) and lactate threshold (LT) in swimming. A 400-m all-out test, a 7 × 200 m incremental step test, and two to four 30-minute submaximal tests were performed by 12 male endurance swimmers (age = 24.5 ± 9.6 years; body mass = 71.3 ± 9.8 kg) to determine S-400, speed corresponding to LT, and maximal lactate steady state (MLSS). S-400 was 1.30 ± 0.09 m·s -1 (400 m-5:08 minutes:seconds). The speed at LT (1.08 ± 0.02 m·s-1; 83.1 ± 2.2 %S-400) was lower than the speed at MLSS (1.14 ± 0.02 m·s-1; 87.5 ± 1.9 %S-400). Maximal lactate steady state occurred at 26 ± 10% of the difference between the speed at LT and S-400. Mean blood lactate values at the speeds corresponding to LT and MLSS were 2.45 ± 1.13 mmol·L-1 and 4.30 ± 1.32 mmol·L-1, respectively. The present findings demonstrate that the range of intensity zones between LT and MLSS (i.e., heavy domain) and between MLSS and S-400 (i.e., severe domain) are very narrow in swimming with LT occurring at 83% S-400 in trained swimmers. Precision and sensitivity of the measurement of aerobic indexes (i.e., LT and MLSS) should be considered when conducting exercise training and testing in swimming. © 2013 National Strength and Conditioning Association.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this study was to analyze the behavior of variables related to swim ability at and above maximal lactate steady state (MLSS), performed at continuous and intermittent conditions in individuals with different aerobic performance levels. Participated of this study male swimmers with ages between 20 to 25 years, specialists in events of 400 m, 800 m and 1500 m and open water swims, with at least 3 years of experience in the modality. The individuals performed a maximal 400-m swim test. After this test, they were divided into two groups, in accordance with the speed attained during 400-m swim test: G1 (higher performance) and G2 (lower performance). For the determination of continuous MLSS (MLSSc), 2 to 4 trials of 30-min were performed. For the determination of the intermittent MLSS (MLSSi) 2 to 4 trials of 30-min (12 repetitions of 2 min 30 s, with 30 s of rest) were performed, in constant speed, with the first trial performed at 102.5% MLSSc. Th technical indexes, stroke rate (FB) and stroke length (CB) were determined in all tests. The SR was calculated trough recordings using the time needed to perform five stroke cycles. The SL was calculated dividing the speed by the SR. There was no significant difference on the antropometric characteristics between groups. The speed at and above MLSSc were significantly higher at G1 (1,23±0,05 e 1,27±0,06, respectively) than G2 (1,10±0,06 e 1,13±0,06, respectively). There was significant change in SL and SR in G2. In the same way, there was significant change in SL and SR only in G2, above MLSSc. Similar to continuous condition, the speeds at and above MLSSi were significantly higher in G1 (1,27±0,05 e 1,30±0,05, respectively) do que no G2 (1,14±0,07 e 1,16±0,07, respectively). There was significant change in SL and SR only in G2. There was significant change in SR and SL in both groups above MLSSi. Thus,...(Complete abstract click electronic access below)