934 resultados para surfactant-protein interaction


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mechanical force modulates myriad cellular functions including migration, alignment, proliferation, and gene transcription. Mechanotransduction, the transmission of mechanical forces and its translation into biochemical signals, may be mediated by force induced protein conformation changes, subsequently modulating protein signaling. For the paxillin and focal adhesion kinase interaction, we demonstrate that force-induced changes in protein complex conformation, dissociation constant, and binding Gibbs free energy can be quantified by lifetime-resolved fluorescence energy transfer microscopy combined with intensity imaging calibrated by fluorescence correlation spectroscopy. Comparison with in vitro data shows that this interaction is allosteric in vivo. Further, spatially resolved imaging and inhibitor assays show that this protein interaction and its mechano-sensitivity are equal in the cytosol and in the focal adhesions complexes indicating that the mechano-sensitivity of this interaction must be mediated by soluble factors but not based on protein tyrosine phosphorylation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Staphylococcus aureus experimental endocarditis relies on sequential fibrinogen binding (for valve colonization) and fibronectin binding (for endothelial invasion) conferred by peptidoglycan-attached adhesins. Fibronectin-binding protein A (FnBPA) reconciles these two properties--as well as elastin binding--and promotes experimental endocarditis by itself. Here we attempted to delineate the minimal subdomain of FnBPA responsible for fibrinogen and fibronectin binding, cell invasion, and in vivo endocarditis. A large library of truncated constructs of FnBPA was expressed in Lactococcus lactis and tested in vitro and in animals. A 127-amino-acid subdomain spanning the hinge of the FnBPA fibrinogen-binding and fibronectin-binding regions appeared necessary and sufficient to confer the sum of these properties. Competition with synthetic peptides could not delineate specific fibrinogen- and fibronectin-binding sites, suggesting that dual binding arose from protein folding, irrespective of clearly defined binding domains. Moreover, coexpressing the 127-amino-acid subdomain with remote domains of FnBPA further increased fibrinogen binding by > or =10 times, confirming the importance of domain interactions for binding efficacy. In animals, fibrinogen binding (but not fibronectin binding) was significantly associated with endocarditis induction, whereas both fibrinogen binding and fibronectin binding were associated with disease severity. Moreover, fibrinogen binding also combined with fibronectin binding to synergize the invasion of cultured cell lines significantly, a feature correlating with endocarditis severity. Thus, while fibrinogen binding and fibronectin binding were believed to act sequentially in colonization and invasion, they appeared unexpectedly intertwined in terms of both functional anatomy and pathogenicity (in endocarditis). This unforeseen FnBPA subtlety might bear importance for the development of antiadhesin strategies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ability to entrap drugs within vehicles and subsequently release them has led to new treatments for a number of diseases. Based on an associative phase separation and interfacial diffusion approach, we developed a way to prepare DNA gel particles without adding any kind of cross-linker or organic solvent. Among the various agents studied, cationic surfactants offered particularly efficient control for encapsulation and DNA release from these DNA gel particles. The driving force for this strong association is the electrostatic interaction between the two components, as induced by the entropic increase due to the release of the respective counter-ions. However, little is known about the influence of the respective counter-ions on this surfactant-DNA interaction. Here we examined the effect of different counter-ions on the formation and properties of the DNA gel particles by mixing DNA (either single- (ssDNA) or double-stranded (dsDNA)) with the single chain surfactant dodecyltrimethylammonium (DTA). In particular, we used as counter-ions of this surfactant the hydrogen sulfate and trifluoromethane sulfonate anions and the two halides, chloride and bromide. Effects on the morphology of the particles obtained, the encapsulation of DNA and its release, as well as the haemocompatibility of these particles, are presented, using the counter-ion structure and the DNA conformation as controlling parameters. Analysis of the data indicates that the degree of counter-ion dissociation from the surfactant micelles and the polar/hydrophobic character of the counter-ion are important parameters in the final properties of the particles. The stronger interaction with amphiphiles for ssDNA than for dsDNA suggests the important role of hydrophobic interactions in DNA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The COP9 signalosome (CSN) is an evolutionarily conserved macromolecular complex that interacts with cullin-RING E3 ligases (CRLs) and regulates their activity by hydrolyzing cullin-Nedd8 conjugates. The CSN sequesters inactive CRL4(Ddb2), which rapidly dissociates from the CSN upon DNA damage. Here we systematically define the protein interaction network of the mammalian CSN through mass spectrometric interrogation of the CSN subunits Csn1, Csn3, Csn4, Csn5, Csn6 and Csn7a. Notably, we identified a subset of CRL complexes that stably interact with the CSN and thus might similarly be activated by dissociation from the CSN in response to specific cues. In addition, we detected several new proteins in the CRL-CSN interactome, including Dda1, which we characterized as a chromatin-associated core subunit of multiple CRL4 proteins. Cells depleted of Dda1 spontaneously accumulated double-stranded DNA breaks in a similar way to Cul4A-, Cul4B- or Wdr23-depleted cells, indicating that Dda1 interacts physically and functionally with CRL4 complexes. This analysis identifies new components of the CRL family of E3 ligases and elaborates new connections between the CRL and CSN complexes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lassa virus (LASV) causing hemorrhagic Lassa fever in West Africa, Mopeia virus (MOPV) from East Africa, and lymphocytic choriomeningitis virus (LCMV) are the main representatives of the Old World arenaviruses. Little is known about how the components of the arenavirus replication machinery, i.e., the genome, nucleoprotein (NP), and L protein, interact. In addition, it is unknown whether these components can function across species boundaries. We established minireplicon systems for MOPV and LCMV in analogy to the existing LASV system and exchanged the components among the three systems. The functional and physical integrity of the resulting complexes was tested by reporter gene assay, Northern blotting, and coimmunoprecipitation studies. The minigenomes, NPs, and L proteins of LASV and MOPV could be exchanged without loss of function. LASV and MOPV L protein was also active in conjunction with LCMV NP, while the LCMV L protein required homologous NP for activity. Analysis of LASV/LCMV NP chimeras identified a single LCMV-specific NP residue (Ile-53) and the C terminus of NP (residues 340 to 558) as being essential for LCMV L protein function. The defect of LASV and MOPV NP in supporting transcriptional activity of LCMV L protein was not caused by a defect in physical NP-L protein interaction. In conclusion, components of the replication complex of Old World arenaviruses have the potential to functionally and physically interact across species boundaries. Residue 53 and the C-terminal domain of NP are important for function of L protein during genome replication and transcription.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Hyperzincemia and hypercalprotectinemia (Hz/Hc) is a distinct autoinflammatory entity involving extremely high serum concentrations of the proinflammatory alarmin myeloid-related protein (MRP) 8/14 (S100A8/S100A9 and calprotectin). OBJECTIVE: We sought to characterize the genetic cause and clinical spectrum of Hz/Hc. METHODS: Proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1) gene sequencing was performed in 14 patients with Hz/Hc, and their clinical phenotype was compared with that of 11 patients with pyogenic arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome. PSTPIP1-pyrin interactions were analyzed by means of immunoprecipitation and Western blotting. A structural model of the PSTPIP1 dimer was generated. Cytokine profiles were analyzed by using the multiplex immunoassay, and MRP8/14 serum concentrations were analyzed by using an ELISA. RESULTS: Thirteen patients were heterozygous for a missense mutation in the PSTPIP1 gene, resulting in a p.E250K mutation, and 1 carried a mutation resulting in p.E257K. Both mutations substantially alter the electrostatic potential of the PSTPIP1 dimer model in a region critical for protein-protein interaction. Patients with Hz/Hc have extremely high MRP8/14 concentrations (2045 ± 1300 μg/mL) compared with those with PAPA syndrome (116 ± 74 μg/mL) and have a distinct clinical phenotype. A specific cytokine profile is associated with Hz/Hc. Hz/Hc mutations altered protein binding of PSTPIP1, increasing interaction with pyrin through phosphorylation of PSTPIP1. CONCLUSION: Mutations resulting in charge reversal in the y-domain of PSTPIP1 (E→K) and increased interaction with pyrin cause a distinct autoinflammatory disorder defined by clinical and biochemical features not found in patients with PAPA syndrome, indicating a unique genotype-phenotype correlation for mutations in the PSTPIP1 gene. This is the first inborn autoinflammatory syndrome in which inflammation is driven by uncontrolled release of members of the alarmin family.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transcription factors play a crucial role in the regulation of cell behavior by modulating gene expression profiles. Previous studies have described a dual role for the AP-1 family transcription factor c-Jun in the regulation of cellular fate. In various cell types weak and transient activations of c-Jun N-terminal kinase (JNK) and c-Jun appear to contribute to proliferation and survival, whereas strong and prolonged activation of JNK and c-Jun result in apoptosis. These opposite roles played by c-Jun are cell type specific and the molecular mechanisms defining these antonymous c-Jun-mediated responses remain incompletely understood. c-Jun activity in transformed cells is regulated by signalling cascades downstream of oncoproteins such as Ras and Raf. In addition, the pro-proliferative role and the survival promoting function for c-Jun has been described in various cancer models. Furthermore, c-Jun was described to be overexpressed in different cancer types. However, the molecular mechanisms by which c-Jun exerts these oncogenic functions are not all clearly established. Therefore it is of primary interest to further identify molecular mechanisms and functions for c-Jun in cancer. Regulation of gene expression is tightly dependent on accurate protein-protein interactions. Therefore, co-factors for c-Jun may define the functions for c-Jun in cancer. Identification of protein-protein interactions promoting cancer may provide novel possibilities for cancer treatment. In this study, we show that DNA topoisomerase I (TopoI) is a transcriptional co-factor for c-Jun. Moreover, c-Jun and TopoI together promote expression of epidermal growth factor receptor (EGFR) in cancer cells. We also show that the clinically used TopoI inhibitor topotecan reduces EGFR expression. Importantly, the effect of TopoI on EGFR transcription was shown to depend on c-Jun as Jun-/- cells or cells treated with JNK inhibitor SP600125 are resistant to topotecan treatment both in regulation of EGFR expression and cell proliferation. Moreover, c-Jun regulates the nucleolar localization and the function of the ribonucleic acid (RNA) helicase DDX21, a previously identified member of c-Jun protein complex. In addition, c-Jun stimulates rRNA processing by supporting DDX21 rRNA binding. Finally, this study characterizes a DDX21 dependent expression of cyclin dependent kinase (Cdk) 6, a correlation of DDX21 expression with prostate cancer progression and a substrate binding dependency of DDX21 nucleolar localization in prostate cancer cells. Taken together, the results of this study validate the c-Jun-TopoI interaction and precise the c-Jun-DDX21 interaction. Moreover, these results show the importance for protein-protein interaction in the regulation of their cellular functions in cancer cell behavior. Finally, the results presented here disclose new exciting therapeutic opportunities for cancer treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fluoresenssiperusteiset kuvantamismenetelmät lysinurisen proteiini-intoleranssin (LPI) soluhäiriön tutkimuksessa Lysinurinen proteiini-intoleranssi on suomalaiseen tautiperintöön kuuluva autosomaalisesti peit¬tyvästi periytyvä sairaus, jonka aiheuttaa kationisten aminohappojen kuljetushäiriö munuaisten ja ohutsuolen epiteelisolujen basolateraalikalvolla. Aminohappojen kuljetushäiriö johtaa moniin oirei¬siin, kuten kasvuhäiriöön, osteoporoosiin, immuunijärjestelmän häiriöihin, oksenteluun ja runsaspro¬teiinisen ravinnon nauttimisen jälkeiseen hyperammonemiaan. LPI-geeni SLC7A7 (solute carrier family 7 member 7) koodaa y+LAT1 proteiinia, joka on basolateraali¬nen kationisten ja neutraalien aminohappojen kuljettimen kevyt ketju, joka muodostaa heterodimee¬rin raskaan alayksikön 4F2hc:n kanssa. Tällä hetkellä SLC7A7-geenistä tunnetaan yli 50 LPI:n aiheut¬tavaa mutaatiota. Tässä tutkimuksessa erityyppisiä y+LAT1:n LPI-mutaatiota sekä yhdeksän C-terminaalista polypep¬tidiä lyhentävää deleetiota kuvannettiin nisäkässoluissa y+LAT1:n GFP (green fluorescent protein) -fuusioproteiineina. Tulokset vahvistivat muissa soluissa tehdyt havainnot siitä, että 4F2hc on edel¬lytyksenä y+LAT1:n solukalvokuljetukselle, G54V-pistemutantti sijaitsee solukalvolla samoin kuin vil¬lityyppinen proteiini, mutta lukukehystä muuttavia ja proteiinia lyhentäviä mutantteja ei kuljeteta solukalvoon. Lisäksi havaittiin, että poikkeuksena tästä säännöstä ovat y+LAT1-deleetioproteiinit, joista puuttui korkeintaan 50 C-terminaalista aminohappoa. Nämä lyhentyneet kuljettimet sijaitsevat solukalvolla kuten villityyppiset ja LPI-pistemutanttiproteiinit. Dimerisaation osuutta kuljetushäiriön synnyssä tutkittiin käyttämällä fluorescence resonance energy transfer (FRET) menetelmää. Heterodimeerin alayksiköistä kloonattiin ECFP (cyan) ja EYFP (yellow) fuusioproteiinit, joita ilmennettiin nisäkässoluissa, ja FRET mitattiin virtaussytometri-FRET -menetel¬mällä (FACS-FRET). Tutkimuksissa kaikkien mutanttien havaittiin dimerisoituvan yhtä tehokkaasti. Kul¬jetushäiriön syynä ei siten ole alayksiköiden dimerisaation estyminen mutaation seurauksena. Tutkimuksessa havaittiin, että kaikki mutantti-y+LAT1-transfektiot tuottavat vähemmän transfektoi¬tuneita soluja kuin villityyppisen y+LAT1:n transfektiot. Solupopulaatioissa, joihin oli tranfektoitu lu¬kukehystä muuttava tai stop-kodonin tuottava mutaatio havaittiin suurempi kuolleisuus kuin saman näytteen transfektoitumattomissa soluissa, kun taas villityyppistä tai G54V-pistemutanttia tuottavas¬sa solupopulaatiossa oli pienempi kuolleisuus kuin saman näytteen fuusioproteiinia ilmentämättö¬missä soluissa. Tulos osoittaa mutanttiproteiinien erilaiset vaikutukset niitä ilmentäviin soluihin, joko suoraan y+LAT1:n tai 4F2hc:n kautta aiheutuneina. LPIFin SLC7A7 lähetti-RNA:n määrä ei merkittävästi poikennut villityyppisen määrästä fibroblasteissa ja lymfoblasteissa. SLC7A7:n promoottorianalyysissä oli osoitettavissa säätelyalueita geenin 5’ ei-koo¬daavalla alueella sekä ensimmäisten kahden intronin alueella. LPI-taudin tautimekanismin kannalta keskeisin tekijä on kuitenkin aminohappokuljetuksen häiriö, jonka vaikutuksesta näistä aminohapoista riippuvaiset prosessit elimistössä eivät toimi normaalisti. Havaittu virheellinen y+LAT1/4F2hc kuljetuskompleksin sijainti edellyttää lisätutkimuksia sen mahdol¬lisen kliinisen merkityksen selvittämiseksi.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The lipids and proteins of biomembranes exhibit highly dissimilar conformations, geometrical shapes, amphipathicity, and thermodynamic properties which constrain their two-dimensional molecular packing, electrostatics, and interaction preferences. This causes inevitable development of large local tensions that frequently relax into phase or compositional immiscibility along lateral and transverse planes of the membrane. On the other hand, these effects constitute the very codes that mediate molecular and structural changes determining and controlling the possibilities for enzymatic activity, apposition and recombination in biomembranes. The presence of proteins constitutes a major perturbing factor for the membrane sculpturing both in terms of its surface topography and dynamics. We will focus on some results from our group within this context and summarize some recent evidence for the active involvement of extrinsic (myelin basic protein), integral (Folch-Lees proteolipid protein) and amphitropic (c-Fos and c-Jun) proteins, as well as a membrane-active amphitropic phosphohydrolytic enzyme (neutral sphingomyelinase), in the process of lateral segregation and dynamics of phase domains, sculpturing of the surface topography, and the bi-directional modulation of the membrane biochemical reactivity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With molecular biology methods and bioinformatics, the Argonaute proteins in Dictyostelium discoideum were characterized, and the function of the AgnA protein in RNAi and DNA methylation was investigated, as well as cellular features. Also interaction partners of the PAZ-Piwi domain of AgnA (PAZ-PiwiAgnA) were discovered. The Dictyostelium genome encodes five Argonaute proteins, termed AgnA/B/C/D/E. The expression level of Argonaute proteins was AgnB/D/E > AgnA > AgnC. All these proteins contain the characteristic conserved of PAZ and Piwi domains. Fluorescence microscopy revealed that the overexpressed C-terminal GFP-fusion of PAZ-PiwiAgnA (PPWa-GFP) localized to the cytoplasm. Overexpression of PPWa-GFP leaded to an increased gene silencing efficiency mediated by RNAi but not by antisense RNA. This indicated that PAZ-PiwiAgnA is involved in the RNAi pathway, but not in the antisense pathway. An analysis of protein-protein interactions by a yeast-two-hybrid screen on a cDNA library from vegetatively grown Dictyostelium revealed that several proteins, such as EF2, EF1-I, IfdA, SahA, SamS, RANBP1, UAE1, CapA, and GpdA could interact with PAZ-PiwiAgnA. There was no interaction between PAZ-PiwiAgnA and HP1, HelF and DnmA detected by direct yeast-two-hybrid analysis. The fluorescence microscopy images showed that the overexpressed GFP-SahA or IfdA fusion proteins localized to both cytoplasm and nuclei, while the overexpressed GFP-SamS localized to the cytoplasm. The expression of SamS in AgnA knock down mutants was strongly down regulated on cDNA and mRNA level in, while the expression of SahA was only slightly down regulated. AgnA knock down mutants displayed defects in growth and phagocytosis, which suggested that AgnA affects also cell biological features. The inhibition of DNA methylation on DIRS-1 and Skipper retroelements, as well as the endogenous mvpB and telA gene, observed for the same strains, revealed that AgnA is involved in the DNA methylation pathway. Northern blot analysis showed that Skipper and DIRS-1 were rarely expressed in Ax2, but the expression of Skipper was upregulated in AgnA knock down mutants, while the expression of DIRS-1 was not changed. A knock out of the agnA gene failed even though the homologous recombination of the disruption construct occurred at the correct site, which indicated that there was a duplication of the agnA gene in the genome. The same phenomenon was also observed in ifdA knock out experiments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: We report an analysis of a protein network of functionally linked proteins, identified from a phylogenetic statistical analysis of complete eukaryotic genomes. Phylogenetic methods identify pairs of proteins that co-evolve on a phylogenetic tree, and have been shown to have a high probability of correctly identifying known functional links. Results: The eukaryotic correlated evolution network we derive displays the familiar power law scaling of connectivity. We introduce the use of explicit phylogenetic methods to reconstruct the ancestral presence or absence of proteins at the interior nodes of a phylogeny of eukaryote species. We find that the connectivity distribution of proteins at the point they arise on the tree and join the network follows a power law, as does the connectivity distribution of proteins at the time they are lost from the network. Proteins resident in the network acquire connections over time, but we find no evidence that 'preferential attachment' - the phenomenon of newly acquired connections in the network being more likely to be made to proteins with large numbers of connections - influences the network structure. We derive a 'variable rate of attachment' model in which proteins vary in their propensity to form network interactions independently of how many connections they have or of the total number of connections in the network, and show how this model can produce apparent power-law scaling without preferential attachment. Conclusion: A few simple rules can explain the topological structure and evolutionary changes to protein-interaction networks: most change is concentrated in satellite proteins of low connectivity and small phenotypic effect, and proteins differ in their propensity to form attachments. Given these rules of assembly, power law scaled networks naturally emerge from simple principles of selection, yielding protein interaction networks that retain a high-degree of robustness on short time scales and evolvability on longer evolutionary time scales.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thimet oligopeptidase (EC 3.4.24.15; EP24.15) was originally described as a neuropeptide-metabolizing enzyme, highly expressed in the brain, kidneys and neuroendocrine tissue. EP24.15 lacks a typical signal peptide sequence for entry into the secretory pathway and is secreted by cells via an unconventional and unknown mechanism. In this study, we identified a novel calcium-dependent interaction between EP24.15 and calmodulin, which is important for the stimulated, but not constitutive, secretion of EP24.15. We demonstrated that, in vitro, EP24.15 and calmodulin physically interact only in the presence of Ca(2+), with an estimated K(d) value of 0.52 mu m. Confocal microscopy confirmed that EP24.15 colocalizes with calmodulin in the cytosol of resting HEK293 cells. This colocalization markedly increases when cells are treated with either the calcium ionophore A23187 or the protein kinase A activator forskolin. Overexpression of calmodulin in HEK293 cells is sufficient to greatly increase the A23187-stimulated secretion of EP24.15, which can be inhibited by the calmodulin inhibitor calmidazolium. The specific inhibition of protein kinase A with KT5720 reduces the A23187-stimulated secretion of EP24.15 and inhibits the synergistic effects of forskolin with A23187. Treatment with calmidazolium and KT5720 nearly abolishes the stimulatory effects of A23187 on EP24.15 secretion. Together, these data suggest that the interaction between EP24.15 and calmodulin is regulated within cells and is important for the stimulated secretion of EP24.15 from HEK293 cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The relationship between network structure/dynamics and biological function constitutes a fundamental issue in systems biology. However, despite many related investigations, the correspondence between structure and biological functions is not yet fully understood. A related subject that has deserved particular attention recently concerns how essentiality is related to the structure and dynamics of protein interactions. In the current work, protein essentiality is investigated in terms of long range influences in protein-protein interaction networks by considering simulated dynamical aspects. This analysis is performed with respect to outward activations, an approach which models the propagation of interactions between proteins by considering self-avoiding random walks. The obtained results are compared to protein local connectivity. Both the connectivity and the outward activations were found to be strongly related to protein essentiality.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

U3 snoRNA is transcribed from two intron-containing genes in yeast, snR17A and snR17B. Although the assembly of the U3 snoRNP has not been precisely determined, at least some of the core box C/D proteins are known to bind pre-U3 co-transcriptionally, thereby affecting splicing and 3 `-end processing of this snoRNA. We identified the interaction between the box C/D assembly factor Nop17p and Cwc24p, a novel yeast RING finger protein that had been previously isolated in a complex with the splicing factor Cef1p. Here we show that, consistent with the protein interaction data, Cwc24p localizes to the cell nucleus, and its depletion leads to the accumulation of both U3 pre-snoRNAs. U3 snoRNA is involved in the early cleavages of 35 S pre-rRNA, and the defective splicing of pre-U3 detected in cells depleted of Cwc24p causes the accumulation of the 35 S precursor rRNA. These results led us to the conclusion that Cwc 24p is involved in pre-U3 snoRNA splicing, indirectly affecting pre-rRNA processing.