936 resultados para surface oxide


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The surface acidity and basicity of oxides of Sm and Zr and their mixed oxides have been determined using a set of Hammett indicators. The data have been correlated with the catalytic activity of these oxides towards the liquid phase reduction of cyclo-hexanone in 2-propanol.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cochin University of Science and Technology

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Praseodymium oxide as a thin film of controllable layer is known to display many unique physiochemical properties, which can be useful to ceramic, semiconductive and sensor industries. Here in this short paper, we describe a new chemical method of depositing praseodymium oxide on tin-doped indium oxide (ITO) surface using a layer-by-layer approach. The process is carried out by dipping the ITO in solutions of adsorbable polycationic chitosan and alkaline praseodymium hydroxide Pr(OH)(3) alternatively in order to build up the well-defined multi-layers. XRD suggests that the predominant form of the oxide is Pr6O11, obtained after heat treatment of the deposited ITO in static air at 500 degrees C. Microscopic studies including AFM, TEM and SEM indicate that the deposited oxide particles are uniform in size and shape (cylindrical), mesoporous and the thickness of the film can be controlled. AC impedance measurements of the deposited materials also reveal that the oxide layers display a high electrical conductivity hence suitable for sensor uses. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The strong metal support interaction (SMSI) was first described in 1978 by Tauster [1-4]. The effect was observed as a severely negative effect on CO and H2 uptake on the catalyst after high temperature calcination under reducing conditions (heating above ~ 700 K) [1,2]. It also had a negative effect on the reaction rate for reactions, such as alkane hydrogenolysis [5,6]. It appeared that the effect occurred for catalysts comprised of reducible supports which were treated at elevated temperature in reducing conditions [2-4]. A classic support which has manifested this behaviour in many studies is TiO2. Over the years following the first discovery of SMSI it has been recognised that the effect is not always negative – for instance for the CO-H2 reaction for which it appears to have a positive effect [5,6]. Further it was noted that hydrogen reduction was not necessary to observe the effect of CO adsorption suppression, it also occurs by vacuum treatment [7], though it should be noted that vacuum treatment at elevated temperature is, in effect, a reducing environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Four aluminas were used as Supports for impregnation with a zirconium oxide with the aim to achieve a coating, without phase separation, between Support and modifier. The Supports were impregnated with different concentrations Of zirconium aqueous resin, obtained through the polymeric precursor method. After impregnation the samples were calcined and then characterized by XRD, which led to identification of crystalline zirconia in different concentrations from each support used. Using a simple geometric model the maximum amount Of Surface modifier Oxide required for the complete coating of a support with a layer of unit cells was estimated. According to this estimate, only the support should be identified below the limit proposed and crystalline zirconium oxide Should be identified above this limit when a complete coating is reached. The results obtained From XRD agree with the estimated values and to confirm the coating, the samples were also characterized by EDS/STEM, HRTEM, XPS, and XAS. The results showed that the zirconium oxide oil the Surface of alumina Support reached the coating in the limit of 15 Zr nm(-2), without the formation of the ZrO(2) phase. (c) 2009 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The adsorption of the diazo dye Direct Red 23 onto a zinc oxide surface at 30 degrees C in the dark was investigated. The color reduction was monitored by spectrophotometry at 503 run. The FTIR and Raman spectra of the Direct Red 23 adsorption as a function of ZnO concentration were registered. From the PM3 semi-empirical calculations of the atomic charge density and dipole moment of the Direct Red 23 molecule, it was demonstrated that the azo, dye molecule may be adsorbed onto the ZnO Surface through molecule geometry modifications, enhancing the interfacial area causing a variation in the bonding frequencies. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mixed oxide compounds, such as TiO2-SnO2 system are widely used as gas sensors and should also provide varistor properties modifying the TiO2 surface. Therefore, a theoretical investigation has been carried out characterizing the effect of SnO2 on TiO2 addition on the electronic structure by means of ab initio SCF-LCAO calculations using all electrons. In order to take into account the finite size of the cluster, we have used the point charge model for the (TiO2)(15) cluster to study the effect on electronic structure of doping the TiO2 (110) Surface. The contracted basis set for titanium (4322/42/3), oxygen (33/3) and tin (43333/4333/43) atoms were used. The charge distributions, dipole moments, and density of states of doping TiO2 and vacancy formation are reported and analysed. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work describes the chemical modification by Tiron(R) molecules of the surface of SnO2 nanoparticles used to prepare nanoporous membranes. Samples prepared with Tiron(R) content between 1 and 20 wt% and fired at 400 C were characterised by X-Ray Powder Diffraction (XRPD), Extended X-ray Absorption Fine Structure (EXAFS), N-2 adsorption isotherms analysis and permeation experiments. XRPD and EXAFS results show a continuous reduction of crystallite size by increasing the Tiron(R) contents until 7.5 wt%. The control exercised by Tiron(R) modifying agent in crystallite growth allows the fine tuning of the average pore size that can be screened from 0.4 to 4 nm as the amount of grafted molecules decreases from 10 to 0 wt%. In consequence, the membrane cut-off can be screened from 1500 to 3500 g.mol(-1).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The surface properties of SnO2 nanoparticles were modified by grafting ionic (Tiron (R). (OH)(2)C6H2(SO3Na)(2)(H2O)-H-.) or non-ionic (Catechol (R). C6H4-1,2-(OH)(2)) capping Molecules during aqueous sol-gel processing to improve the redispersibility of powdered xerogel. The effect of the amount of grafted organic molecules on the redispersibility of powders in aqueous solution at several basic pH values was Studied. The nanostructural features of the colloidal suspensions were analyzed by small angle X-ray scattering (SAXS) measurements. Irrespective of the nature and amount of grafted molecules, complete redispersion was obtained in aqueous solution at pH = 13. The redispersion at pH = 11 results in a mixture of dispersed primary particles and aggregates. The proportion of well dispersed nanoparticles and aggregates (and their average size) can be tuned by the quantity of grafted ionic molecules.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Titanium(IV) oxide, coated on the surface of silica gel (surface area, 308 m2 g-1; amount of Ti(IV) per gram of modified silica gel, 1.8 x 10(-3) mol), was used to adsorb CrO4(2-) ions from acidic solutions. The exchange capacity increased at lower pH values and was affected to some extent by the acid used. The material was used to preconcentrate Cr(VI) from 0.5 ppm solutions of chromate very efficiently and virtually 100% recovery was achieved in every instance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The preparation of crack-free SnO2 supported membranes requires the development of new strategies of synthesis capable to allow controlled changes of surface chemistry and to improve the processability of supported layers. In this way, the controlled modification of the SnO2 nanoparticle surface by adding capping molecules like Tiron(R) ((OH)(2)C6H2(SO3Na)(2)) during the sol-gel process was studied, aiming to obtain high performance membranes. Colloidal suspensions were prepared by hydrolyzing SnCl4.5H(2)O aqueous solution with NH4OH in presence of Tiron(R). The effect of the amount of Tiro(R) (from I to 20 wt.%) on the structural features of nanoparticles, powder redispersability and particle-solution interface properties was investigated by X-ray powder diffraction (XRPD), extended X-ray absorption fine structure (EXAFS), quasi-elastic light scattering and electrophoretic mobility measurements. XRPD and EXAFS results showed that the addition of Tiron(R) up to 20 wt.% to colloidal suspensions does not affect the crystallite size of SnO2 primary particles, determined around 2-3 nm. This value is comparable to the hydrodynamic size measured after redispersion of powder prepared with amount of Tiro(R) higher than 7.5 wt.%, indicating the absence of condensation reactions between primary particles after the initial precipitation step. As a consequence the powder with amount of Tiron(R) > 7.5 wt.%, can be fully redispersed in aqueous solution at pH greater than or equal to I I until a nanoparticle concentration of 6 vol.%. The electrophoresis measurements showed a decrease of the isoelectric point by increasing the amount of grafted Tiron(R) at the SnO2 nanoparticle surface, resulting in negatively charged particle-solution interface in all the studied pH range (2-11). These features govern the gelation process favoring the preparation of crack-free SnO2 supported membranes. The control exercised by Tiron(R) modifying agent in the aggregation process allows the fine-tuning of the porosity, from 0.124 to 0.065 cm(3) g(-1), and mean pore size, from 6.4 to 1.9 nm, as the amount of grafted molecules increases from 0 to 10 wt.%. In consequence, the membrane cut-off determined by filtration of polyethylene glycol standard solutions can be screened from 1500 to 3500 g mol(-1). (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Silica gel with a surface area of 500 m2g-1 and an average pore diameter of 60 angstrom was chemically modified with Ti(IV) oxide using the grafting method. The amount of metal oxide attached to the surface was 1.8.10(-3) mol g-1. The X-ray photoelectron spectra showed that the metal ion species on the surface are Ti(IV) in TiO2 and MTiO3 (M = Ca2+, Sr2+, Ba2+ and Pb2+), i.e. they have the binding energy of Ti2p3/2 = 458.7 eV. The dehydration of the solid at higher temperature increased the O(II)/Ti (O(II) = oxygen bound to titanium atom) ratio, presumably due to a reticulation of the hydrous Ti(IV) oxide on the silica surface at higher temperatures. Migration of Ti(IV) into the silica gel matrix was observed but the specific surface area was not significantly changed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work presents results concerning the preparation of redispersible tin oxide nanoparticles achieved by using Tiron molecule ((OH)(2)C(6)H(2) (SO(3)Na)(2)) as surface modifying agent. The adsorption isotherm measurements show that an amount of 10 wt.% of Tiron is need to recover the SnO(2) nanoparticles surface with a monolayer. These nanoparticles can be easily redispersed in tetramethyl ammonium hydroxide at pH greater than or equal to11 until a powder concentration of 12 vol.% of tin. Under these conditions, hydrodynamic particle size is about 7 nm and increases until 52 nm at pH 6 due to the aggregation phenomenon. The time evolution of the viscoelastic properties indicates that the suspensions at pH 12.5, containing 12 vol.% tin oxide and 10 wt.% of surface modifier are kinetically stable. After thermal treatment at different temperature the powder characterisation evidences that the presence of Tiron monolayer at the nanoparticles surface increases the thermal stability of the porous texture and prevent the micropore size growth. This set of results contributes to satisfy the demand for more controlled synthesis of nanoparticles with high thermal stability as required for fabrication of ultrafiltration ceramic membranes. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A frequency upconversion process in Pr(3+) doped TeO(2)-ZnO glasses containing silver nanoparticles is studied under excitation with a nanosecond laser operating at 590 nm, in resonance with the (3)H(4)-->(1)D(2) transition. The excited Pr(3+) ions exchange energy in the presence of the nanoparticles, originating efficient conversion from orange to blue. The enhancement in the intensity of the luminescence at similar to 482 nm, corresponding to the (3)P(0)-->(3)H(4) transition, is due to the influence of the large local field on the Pr(3+) ions, which are located near the metallic nanoparticles. (C) 2008 American Institute of Physics.