980 resultados para surface moisture


Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of a comprehensive effort to predict the development of caking in granular materials, a mathematical model is introduced to model simultaneous heat and moisture transfer with phase change in porous media when undergoing temperature oscillations/cycling. The resulting model partial differential equations were solved using finite-volume procedures in the context of the PHYSICA framework and then applied to the analysis of sugar in storage. The influence of temperature on absorption/desorption and diffusion coefficients is coupled into the transport equations. The temperature profile, the depth of penetration of the temperature oscillation into the bulk solid, and the solids moisture content distribution were first calculated, and these proved to be in good agreement with experimental data. Then, the influence of temperature oscillation on absolute humidity, moisture concentration, and moisture migration for different parameters and boundary conditions was examined. As expected, the results show that moisture near boundary regions responds faster than farther away from them with surface temperature changes. The moisture absorption and desorption in materials occurs mainly near boundary regions (where interactions with the environment are more pronounced). Small amounts of solids moisture content, driven by both temperature and vapour concentration gradients, migrate between boundary and center with oscillating temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – This paper discusses the use of modelling techniques to predict the reliability of an anisotropic conductive film (ACF) flip chip in a humid environment. The purpose of this modelling work is to understand the role that moisture plays in the failure of ACF flip chips. Design/methodology/approach – A 3D macro-micro finite element modelling technique was used to determine the moisture diffusion and moisture-induced stresses inside the ACF flip chip. Findings – The results show that the ACF layer in the flip chip can be expected to be fully saturated with moisture after 3?h at 121°C, 100%RH, 2?atm test conditions. The swelling effect of the adhesive due to this moisture absorption causes predominately tensile stress at the interface between the adhesive and the metallization, which could cause a decrease in the contact area, and therefore an increase in the contact resistance. Originality/value – This paper introduces a macro-micro modelling technique which enables more detailed 3D modelling analysis of an ACF flip chip than previously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Durability of concrete can be improved by applying surface treatments. Pore-lining treatments prevent or delay the ingress of water-borne salts while allowing vapour transfer across the concrete surface. The most common pore-liners are silanes and siloxanes; both reported to give good results. One area of concern, however, is variability in effectiveness of the treatment. This variability may be due to inconsistent coverage or extreme drying conditions. With care these can be controlled but another source of variability which is difficult to control is the moisture profile within the concrete at the time of application of the treatment. This paper describes a test programme to assess the sensitivity of three different surface treatments to moisture gradient in the concrete at the time of application of treatment. The test programme included durability parameters such as chloride ingress, corrosion due to chloride ingress, freeze-thaw salt scaling resistance. Water absorption (sorptivity) of treated and untreated concretes was also measured with a non-distructive test technique called Autoclam with the aim of determining if the Autoclam sorptivity test can be used to assess the effectiveness of surface treatments. Using these results it is possible to avoid, or allow for, moisture conditions which would adversely affect the success of a pore-liner. However there are advantages in specifying an expected performance of the surface treatment rather than specifying the conditions in which it must be placed. By this method a treatment would have to achieve a specified value of sorptivity or a specified reduction in sorptivity. Failure to do so would be an objective basis on which to make a decision of whether or not to reject the treatment. The Autoclam is a device capable of measuring sorptivity values down to the range typical of surface treated concrete. The paper assesses if the device can be used to discriminate between acceptable treatment and unsatisfactory treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores how the surface permeability of sandstone blocks changes over time in response to repeated salt weathering cycles. Surface permeability controls the amount of moisture and dissolved salt that can penetrate in and facilitate decay. Connected pores permit the movement of moisture (and hence soluble salts) into the stone interior, and where areas are more or less permeable soluble salts may migrate along preferred pathways at differential rates. Previous research has shown that salts can accumulate in the near-surface zone and lead to partial pore blocking which influences subsequent moisture ingress and causes rapid salt accumulation in the near-surface zone.

Two parallel salt weathering simulations were carried out on blocks of Peakmoor Sandstone of different volumes. Blocks were removed from simulations after 2, 5, 10, 20 and 60 cycles. Permeability measurements were taken for these blocks at a resolution of 20 mm, providing a grid of 100 permeability values for each surface. The geostatistical technique of ordinary kriging was applied to the data to produce a smoothed interpolation of permeability for these surfaces, and hence improve understanding of the evolution of permeability over time in response to repeated salt weathering cycles.

Results illustrate the different responses of the sandstone blocks of different volumes to repeated salt weathering cycles. In both cases, after an initial subtle decline in the permeability (reflecting pore blocking), the permeability starts to increase — reflected in a rise in mean, maximum and minimum values. However, between 10 and 20 cycles, there is a jump in the mean and range permeability of the group A block surfaces coinciding with the onset of meaningful debris release. After 60 cycles, the range of permeability in the group A block surface had increased markedly, suggesting the development of a secondary permeability. The concept of dynamic instability and divergent behaviour is applied at the scale of a single block surface, with initial small-scale differences across a surface having larger scale consequences as weathering progresses.

After cycle 10, group B blocks show a much smaller increase in mean permeability, and the range stays relatively steady — this may be explained by the capillary conditions set up by the smaller volume of the stone, allowing salts to migrate to the ‘back’ of the blocks and effectively relieving stress at the ‘front’ face.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In constant, search for micro/mesoporous materials, gallium phosphates, have attracted continued interest due to the large pore size reported for some of these solids in comparison with analogous aluminum phosphates. However up to now, the porosity of gallium phosphates collapsed upon template removal or exposure to the ambient moisture. In the present work, we describe high-surface thermally stable mesoporous gallium phosphates synthesized from gallium propoxide and PCl3 and different templating agents such as amines (dipropylamine, piperidine and aminopiperidine) and quaternary ammonium salts (C16H33(CH3)3NBr and C16PyCl). These highly reactive precursors have so far not been used as gallium and phosphate sources for the synthesis of gallophosphates. Conceptually, our present synthetic procedure is based on the fast formation of gallium phosphate nanoparticles via the reaction of gallium propoxide with PCl3 and subsequent construction of the porous material with nanoparticles as building blocks. The organization of the gallophosphate nanoparticles in stable porous structures is effected by the templates. Different experimental procedures varying the molar composition of the sol-gel, pH and the pretreatment of gallium precursor were assayed, most of them leading to satisfactory materials in terms of thermal stability and porosity. In this way, a series of gallium phosphates with surface are above 200 m(2) g(-1), and narrow pore size from 3 to 6 nm and remarkable thermal stability (up to 550 degrees C) have been prepared. In some cases, the structure tends to show some periodicity and regularity as determined by XRD. The remarkable stability has allowed us to test the catalytic activity of gallophosphates for the aerobic oxidation of alkylaromatics with notable good results. Our report reopens the interest for gallophosphates in heterogeneous catalysis. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many previous studies into internal temperature gradients within stone have assumed smooth, exponential increases and decreases in sub-surface temperatures in response, for example, to diurnal patterns of heating and cooling and these have been used to explain phenomena such as large-scale contour scaling. This high-resolution experimental study, in which a porous limestone block was subjected to alternate surface heating and cooling using an infrared lamp, demonstrates that internal temperature gradients in response to short-term environmental cycles (measured in minutes) can in fact be complex and inconsistent. Results confirm the significance of very steep temperature/stress gradients within the outer 10 mm or less of exposed stone. Below this the data indicate complex patterns of temperature reversals, the amplitudes of which are attenuated with depth and which are influenced in their intensity and location by variations in the relative duration of heating and cooling phases. It is suggested that the reversals might represent ‘interference patterns’ between incoming and outgoing thermal waves, but whatever their origin they are potentially important because they occur within the zone in which many stone decay processes, especially salt weathering, operate. These processes invariably respond to temperature and moisture fluctuations, and short-term interruptions to insolation could, for example, trigger these fluctuations on numerous occasions over a day. In particular, the reversals occur at a scale that is commensurate with decay by multiple flaking and could indicate an underlying control on this previously little-researched pattern of weathering. In the context of this publication, however, the main lesson to be learned from this study is that differing scales of behaviour require different scales of enquiry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With greater emphasis now being placed on the durability of concrete and the need for on-site characterization of concrete for durability, there is an increasing dependence on the measurement of the permeation properties of concrete. Such properties can be measured in the laboratory under controlled ambient conditions, namely, temperature and relative humidity, and comparisons made between samples not affected by testing conditions. An important factor that influences permeation measurements is the moisture state of the concrete prior to testing. Moisture gradients are known to exist in exposed concretes; therefore, all laboratory tests are generally carried out after preconditioning to a reference moisture state. This is reasonably easy to achieve in the laboratory, but more difficult to carry out on-site. Different methods of surface preconditioning in situ concrete are available; however, there is no general agreement on the suitability of any one method. Therefore, a comprehensive set of experiments was carried out with four different preconditioning methods. Results from these investigations indicated that only superficial drying could be achieved by using any of the preconditioning methods investigated and that significant moisture movement below a depth of 15 mm was not evident.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has long been accepted that thermal and moisture regimes within stonework exert a major influence upon patterns of salt movement and, subsequently, the type and severity of salt-induced decay. For example, it is suggested that slow drying is more likely to bring dissolved salts to the surface, whereas rapid drying could result in the retention of some salt at or near the frequent wetting depth. In reality however, patterns of heating, cooling and surface wetting regimes that drive them – are complex and inconsistent responses to a wide range of environmental controls. As a first step to understanding the complexity of these relationships, this paper reports a series of experiments within a climatic cabinet designed to replicate the effects of short-term temperature fluctuations on the surface and sub-surface temperature regimes of a porous Jurassic limestone, and how they are influenced by surface wetting, ambient temperature and surface airflow. Preliminary results confirm the significance of very steep temperature/stress gradients within the outer centimetre or less of exposed stone under short-duration cycles of heating and cooling. This is important because this is the zone in which many stone decay processes, particularly salt weathering, operate, these processes invariably respond to temperature and moisture fluctuations, and short-term interruptions to insolation could, for example,
trigger these fluctuations on numerous occasions over a day. The data also indicate that there are complex patterns of temperature reversal with depth that are influenced in their intensity and location by surface wetting and moisture penetration, airflow across the surface and ambient air temperature. The presence of multiple temperature reversals and their variation over the course of heating and cooling phases belies previous assumtions of smooth, exponential increases and decreases in subsurface temperatures in response, for example to diurnal patterns of heating and cooling

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monitoring of temperature and moisture changes in response to different micro-environment of building stones is essential to understand the material behaviour and the degradation mechanisms. From a practical point of view, having a continuous and detailed understanding of micro-environmental changes in building stones helps to assist in their maintenance and repair strategies. Temperature within the stone is usually monitored by means of thermistors, whereas wide ranges of techniques are available for monitoring the moisture. In the case of concrete an electrical resistance method has previously been used as an inexpensive tool for monitoring moisture changes. This paper describes the adaptation of this technique and describes its further development for monitoring moisture movement in building stones.
In this study a block of limestone was subjected to intermittent infrared radiation with programmed cycles of ambient temperature, rainfall and wind conditions in an automated climatic chamber. The temperature and moisture changes at different depths within the stone were monitored by means of bead thermistors and electrical resistance sensors. This experiment has helped to understand the thermal conductivity and moisture transport from surface into deeper parts of the stone at different simulated extreme climatic conditions. Results indicated that variations in external ambient conditions could substantially affect the moisture transport and temperature profile within the micro-environment of building stones and hence they could have a significant impact on stone decay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Consumers trust commercial food production to be safe, and it is important to strive to improve food safety at every level. Several outbreaks of food-borne disease have been caused by Salmonella strains associated with dried food. Currently we do not know the mechanisms used by Salmonella enterica serovar Typhimurium to survive in desiccated environments. The aim of this study was to discover the responses of S. Typhimurium ST4/74 at the transcriptional level to desiccation on a stainless steel surface and to subsequent rehydration. Bacterial cells were dried onto the same steel surfaces used during the production of dry foods, and RNA was recovered for transcriptomic analysis. Subsequently, dried cells were rehydrated and were again used for transcriptomic analysis. A total of 266 genes were differentially expressed under desiccation stress compared with a static broth culture. The osmoprotectant transporters proP, proU, and osmU (STM1491 to STM1494) were highly upregulated by drying. Deletion of any one of these transport systems resulted in a reduction in the long-term viability of S. Typhimurium on a stainless steel food contact surface. The proP gene was critical for survival; proP deletion mutants could not survive desiccation for long periods and were undetectable after 4 weeks. Following rehydration, 138 genes were differentially expressed, with upregulation observed for genes such as proP, proU, and the phosphate transport genes (pstACS). In time, this knowledge should prove valuable for understanding the underlying mechanisms involved in pathogen survival and should lead to improved methods for control to ensure the safety of intermediate-and low-moisture foods. © 2013, American Society for Microbiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stone surfaces are sensitive to their environment. This means that they will often respond to exposure conditions by manifesting a change in surface characteristics. Such changes can be more than simply aesthetic, creating surface/subsurface heterogeneity in stone at the block scale, promoting stress gradients to be set up as surface response to, for example, temperature fluctuations, can diverge from subsurface response. This paper reports preliminary experiments investigating the potential of biofilms and iron precipitation as surface-modifiers on stone, exploring the idea of block-scale surface-to-depth heterogeneity, and investigating how physical alteration in the surface and near-surface zone can have implications for subsurface response and potentially for long-term decay patterns. Salt weathering simulations on fresh and surface-modified stone suggest that even subtle surface modification can have significant implications for moisture uptake and retention, salt concentration and distribution from surface to depth, over the period of the experimental run. The accumulation of salt may increase the retention of moisture, by modifying vapour pressure differentials and the rate of evaporation.
Temperature fluctuation experiments suggest that the presence of a biofilm can have an impact on energy transfer processes that occur at the stone surface (for example, buffering against temperature fluctuation), affecting surface-to-depth stress gradients. Ultimately, fresh and surface-modified blocks mask different kinds of system, which respond to inputs differently because of different storage mechanisms, encouraging divergent behaviour between fresh and surface modified stone over time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interest in polyethylene and polypropylene bonding has increased in the last years. However, adhesive joints with adherends which are of low surface energy and which are chemically inert present several difficulties. Generally, their high degree of chemical resistance to solvents and dissimilar solubility parameters limit the usefulness of solvent bonding as a viable assembly technique. One successful approach to adhesive bonding of these materials involves proper selection of surface pre-treatment prior to bonding. With the correct pre-treatment it is possible to glue these materials with one or more of several adhesives required by the applications involved. A second approach is the use of adhesives without surface pre-treatment, such as hot melts, high tack pressure-sensitive adhesives, solvent-based specialty adhesives and, more recently, structural acrylic adhesives as such 3M DP-8005® and Loctite 3030®. In this paper, the shear strengths of two acrylic adhesives were evaluated using the lap shear test method ASTM D3163 and the block shear test method ASTM D4501. Two different industrial polyolefins (polyethylene and polypropylene) were used for adherends. However, the focus of this study was to measure the shear strength of polyethylene joints with acrylic adhesives. The effect of abrasion was also studied. Some test specimens were manually abraded using 180 and 320 grade abrasive paper. An additional goal of this work was to examine the effect of temperature and moisture on mechanical strength of adhesive joints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to decrease the risk of severe wildfire, prescribed fire has recently been adopted in Portugal and elsewhere in the Mediterranean as a major tool for reducing the fuel load instead of manual or mechanical removal of vegetation. There has been some research into its impact on soils in shrublands and grasslands, but to date little research has been conducted in forested areas in the region. As a result, the impact of prescribed fire on the physico-chemical soil characteristics of forest soils has been assumed to be minimal, but this has not been demonstrated. In this study, we present the results of a monitoring campaign of a detailed pre- and post-prescribed fire assessment of soil properties in a long-unburnt P. pinaster plantation, NW Portugal. The soil characteristics examined were pH, total porosity, bulk density, moisture content, organic matter content and litter/ash quantity. The results show that there was no significant impact on the measured soil properties, the only effect being confined to minor changes in the upper 1 cm of soil. We conclude that provided the fire is carried out according to strict guidelines in P. pinaster forest, a minimal impact on soil properties can be expected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to decrease the risk of severe wildfire, prescribed fire has recently been adopted in Portugal and elsewhere in the Mediterranean as a major tool for reducing the fuel load instead of manual or mechanical removal of vegetation. There has been some research into its impact on soils in shrublands and grasslands, but to date little research has been conducted in forested areas in the region. As a result, the impact of prescribed fire on the physico-chemical soil characteristics of forest soils has been assumed to be minimal, but this has not been demonstrated. In this study, we present the results of a monitoring campaign of a detailed pre- and post-prescribed fire assessment of soil properties in a long-unburnt P. pinaster plantation, NW Portugal. The soil characteristics examined were pH, total porosity, bulk density, moisture content, organic matter content and litter/ash quantity. The results show that there was no significant impact on the measured soil properties, the only effect being confined to minor changes in the upper 1 cm of soil. We conclude that provided the fire is carried out according to strict guidelines in P. pinaster forest, a minimal impact on soil properties can be expected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seed moisture content is significant in the handling and processing of seeds. This work therefore determined the physical properties of Locust bean seeds as functions of seed moisture content in the moisture range of 5.9 – 28.2% dry basis. Mohsenin, Stepanoff and ASAE standard methods were used in determining the properties. Increases in seed dimensions vitz length = 10.2±1.0 – 11.3±0.9 mm; width = 8.5±0.8 – 9.1±0.6 mm; surface area = 191.2±24.6 – 208.3±26.3 mm2 ; geometric mean diameter = 7.78±0.49 – 8.12±0.03 and arithmetic mean diameter = 8.06±0.56 – 8.34±0.49 mm were recorded. Seed thickness = 5.49±0.43 – 5.26±0.62 mm; sphericity = 0.75±0.04 – 0.71±0.03; true density = 1251.96±55.5 - 1222±62.16 kgm-3 and porosity = 48.4±2.14 – 41.9±3.78 decreased. Static coefficient of friction increased on plywood (0.5±0.02 – 0.6±0.01), glass (0.4±0.05 – 0.5±0.01) and decreased on aluminium (0.5±0.02 – 0.5±0.04). A data of the physical properties of Locust bean; Parkia biglobosa was developed. This is useful for the design and development of equipment necessary for its handling and processing.