179 resultados para superstring vacua
Resumo:
A ten-dimensional super-Poincaré covariant formalism for the superstring was recently developed which involves a BRST operator constructed from superspace matter variables and a pure spinor ghost variable. A super-Poincaré covariant prescription was defined for computing tree amplitudes and was shown to coincide with the standard RNS prescription. In this paper, picture-changing operators are used to define functional integration over the pure spinor ghosts and and to construct a suitable b ghost. A super-Poincaré covariant prescription is then given for the computation of N-point multiloop amplitudes. One can easily prove that massless N-point multiloop amplitudes vanish for N < 4, confirming the perturbative finiteness of superstring theory. One can also prove the Type IIB S-duality conjecture that R4 terms in the effective action receive no perturbative contributions above one loop. © SISSA/ISAS 2004.
Resumo:
Although it is not known how to covariantly quantize the Green-Schwarz (GS) superstring, there exists a semi-light-cone gauge choice in which the GS superstring can be quantized in a conformally invariant manner. In this paper, we prove that BRST quantization of the GS superstring in semi-light-cone gauge is equivalent to BRST quantization using the pure spinor formalism for the superstring © SISSA/ISAS 2005.
Resumo:
Using arguments based on BRST cohomology, the pure spinor formalism for the superstring in an AdS 5×S 5 background is proven to be BRST invariant and conformally invariant at the quantum level to all orders in perturbation theory. Cohomology arguments are also used to prove the existence of an infinite set of non-local BRST-invariant charges at the quantum level. © SISSA 2005.
Resumo:
The super-Poincaré covariant formalism for the superstring is used to compute massless four-point two-loop amplitudes in ten-dimensional superspace. The computations are much simpler than in the RNS formalism and include both external bosons and fermions. © SISSA 2006.
Resumo:
We compute the one-loop beta functions for the Type II superstring using the pure spinor formalism in a generic supergravity background. It is known that the classical pure spinor BRST symmetry puts the background fields on-shell. In this paper we show that the one-loop beta functions vanish as a consequence of the classical BRST symmetry of the action. © SISSA 2007.
Resumo:
Among other things, the pure spinor formalism has been used to rederive some particular superstring scattering amplitudes in the last few years. I will briefly review how the computations were done and show that the kinematical factors of these amplitudes can be simply written as integrals in a pure spinor superspace. © 2007 Elsevier B.V. All rights reserved.
Resumo:
Nilpotency of the pure spinor BRST operator in a curved background implies superspace equations of motion for the background. By computing one-loop corrections to nilpotency for the heterotic sigma model, the Yang-Mills Chern-Simons corrections to the background are derived. © 2008 SISSA.
Resumo:
Using the results recently obtained for computing integrals over (non-minimal) pure spinor superspace, we compute the coefficient of the massless two-loop four-point amplitude from first principles. Contrasting with the mathematical difficulties in the RNS formalism where unknown normalizations of chiral determinant formulæ force the two-loop coefficient to be determined only indirectly through factorization, the computation in the pure spinor formalism can be smoothly carried out. © SISSA 2010.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
A simpler prescription to calculate MHV amplitudes for gravitons at tree level in superstring theory
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)