966 resultados para sugars
Resumo:
Los materiales lignocelulósicos son potenciales precursores de recursos bioenergéticos, por lo que sería interesante desarrollar tecnologías capaces de capturar su energía y utilizarla en el sector del transporte como combustibles. El azúcar contenido en los materiales lignocelulósicos puede ser liberado por medio de la hidrólisis y usado después por microorganismos. El objetivo del proyecto es encontrar un método de separación de la celulosa y la biomasa de chopo en monómeros de glucosa por medio de la hidrólisis. Para ello se han estudiado tres métodos de hidrólisis: la mecano-catálisis, utilizando diferentes tipos de molinos y caolinita como catalizador, la hidrólisis con líquidos iónicos, estudiando la viabilidad de los reactivos [C4mim+][I-] y [C4mim+][PF6-], y la hidrólisis ácida, usando HCl en concentraciones y temperaturas distintas para optimizar el proceso. En todos los casos se ha llevado a cabo un pretratamiento y se ha aplicado el método de TLC como verificación del proceso. Los tres métodos se han comparado y se ha desarrollado un método de correlación entre la mancha de TLC y la concentración del producto.
Resumo:
ACKNOWLEDGMENTS G.D.B. thanks the Wellcome Trust and MRC (United Kingdom) for funding.
Resumo:
Feedback regulation of photosynthesis by carbon metabolites has long been recognized, but the underlying cellular mechanisms that control this process remain unclear. By using an Arabidopsis cell culture, we show that a block in photosynthetic electron flux prevents the increase in transcript levels of chlorophyll a/b-binding protein and the small subunit of Rubisco that typically occurs when intracellular sugar levels are depleted. In contrast, the expression of the nitrate reductase gene, which is induced by sugars, is not affected. These findings were confirmed in planta by using Arabidopsis carrying the firefly luciferase reporter gene fused to the plastocyanin and chlorophyll a/b-binding protein 2 gene promoters. Transcription from both promoters increases on carbohydrate depletion. Blocking photosynthetic electron transport with 3-(3′, 4′-dichlorophenyl)-1,1′-dimethylurea prevents this increase in transcription. We conclude that plastid-derived redox signaling can override the sugar-regulated expression of nuclear-encoded photosynthetic genes. In the sugar-response mutant, sucrose uncoupled 6 (sun6), plastocyanin-firefly luciferase transcription actually increases in response to exogenous sucrose rather than decreasing as in the wild type. Interestingly, plastid-derived redox signals do not influence this defective pattern of sugar-regulated gene expression in the sun6 mutant. A model, which invokes a positive inducer originating from the photosynthetic electron transport chain, is proposed to explain the nature of the plastid-derived signal.
Resumo:
The aim of this study was to investigate the interactions between cytokinin, sugar repression, and light in the senescence-related decline in photosynthetic enzymes of leaves. In transgenic tobacco (Nicotiana tabacum) plants that induce the production of cytokinin in senescing tissue, the age-dependent decline in NADH-dependent hydroxypyruvate reductase (HPR), ribulose-1,5-bisphosphate carboxylase/oxygenase, and other enzymes involved in photosynthetic metabolism was delayed but not prevented. Glucose (Glc) and fructose contents increased with leaf age in wild-type tobacco and, to a greater extent, in transgenic tobacco. To study whether sugar accumulation in senescing leaves can counteract the effect of cytokinin on senescence, discs of wild-type leaves were incubated with Glc and cytokinin solutions. The photorespiratory enzyme HPR declined rapidly in the presence of 20 mm Glc, especially at very low photon flux density. Although HPR protein was increased in the presence of cytokinin, cytokinin did not prevent the Glc-dependent decline. Illumination at moderate photon flux density resulted in the rapid synthesis of HPR and partially prevented the negative effect of Glc. Similar results were obtained for the photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase. It is concluded that sugars, cytokinin, and light interact during senescence by influencing the decline in proteins involved in photosynthetic metabolism.
Resumo:
Changes in apoplastic carbohydrate concentrations and activities of carbohydrate-degrading enzymes were determined in crown tissues of oat (Avena sativa L., cv Wintok) during cold hardening. During second-phase hardening (−3°C for 3 d) levels of fructan, sucrose, glucose, and fructose in the apoplast increased significantly above that in nonhardened and first-phase-hardened plants. The extent of the increase in apoplastic fructan during second-phase hardening varied with the degree of fructan polymerization (DP) (e.g. DP3 and DP4 increased to a greater extent than DP7 and DP > 7). Activities of invertase and fructan exohydrolase in the crown apoplast increased approximately 4-fold over nonhardened and first-phase-hardened plants. Apoplastic fluid extracted from nonhardened, first-phase-hardened, and second-phase-hardened crown tissues had low levels, of symplastic contamination, as determined by malate dehydrogenase activity. The significance of these results in relation to increases in freezing tolerance from second-phase hardening is discussed.
Resumo:
The existence of the RNA world, in which RNA acted as a catalyst as well as an informational macromolecule, assumes a large prebiotic source of ribose or the existence of pre-RNA molecules with backbones different from ribose-phosphate. The generally accepted prebiotic synthesis of ribose, the formose reaction, yields numerous sugars without any selectivity. Even if there were a selective synthesis of ribose, there is still the problem of stability. Sugars are known to be unstable in strong acid or base, but there are few data for neutral solutions. Therefore, we have measured the rate of decomposition of ribose between pH 4 and pH 8 from 40 degrees C to 120 degrees C. The ribose half-lives are very short (73 min at pH 7.0 and 100 degrees C and 44 years at pH 7.0 and 0 degrees C). The other aldopentoses and aldohexoses have half-lives within an order of magnitude of these values, as do 2-deoxyribose, ribose 5-phosphate, and ribose 2,4-bisphosphate. These results suggest that the backbone of the first genetic material could not have contained ribose or other sugars because of their instability.
Resumo:
Three HPLC methods were optimised for the determination of citric acid, succinic acid and ascorbic acid using a photodiode array detector and fructose, glucose and sucrose using a refractive index in twenty eight citrus juices. The analysis was completed in <16 min. Two different harvests were taken into account for this study. For the season 2011, ascorbic acid content was comprised between 19.4 and 59 mg vitamin C/100 mL; meanwhile for the season 2012, the content was slightly higher for most of the samples ranging from 33.5 to 85.3 mg vitamin C/100 mL. Moreover, the citric acid content in orange juices ranged between 9.7 and 15.1 g L−1, while for clementines the content was clearly lower (i.e. from 3.5 to 8.4 g L−1). However, clementines showed the highest sucrose content with values near to 6 g/100 mL. Finally, a cluster analysis was applied to establish a classification of the citrus species.