805 resultados para sudden cardiac arrest


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sudden cardiac death (SCD) is by definition unexpected and cardiac in nature. The investigation is almost invariably performed by a forensic pathologist. Under these circumstances the role of the forensic pathologist is twofold: (1.) to determine rapidly and efficiently the cause and manner of death and (2.) to initiate a multidisciplinary process in order to prevent further deaths in existing family members. If the death is determined to be due to "natural" causes the district attorney in charge often refuses further examinations. However, additional examinations, i.e. extensive histopathological investigations and/or molecular genetic analyses, are necessary in many cases to clarify the cause of death. The Swiss Society of Legal Medicine created a multidisciplinary working group together with clinical and molecular geneticists and cardiologists in the hope of harmonising the approach to investigate SCD. The aim of this paper is to close the gap between the Swiss recommendations for routine forensic post-mortem cardiac examination and clinical recommendations for genetic testing of inherited cardiac diseases; this is in order to optimise the diagnostic procedures and preventive measures for living family members. The key points of the recommendations are (1.) the forensic autopsy procedure for all SCD victims under 40 years of age, (2.) the collection and storage of adequate samples for genetic testing, (3.) communication with the families, and (4.) a multidisciplinary approach including cardiogenetic counselling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES Cerebral hypoxic-ischaemic injury following cardiac arrest is a devastating disease affecting thousands of patients each year. There is a complex interaction between post-resuscitation injury after whole-body ischaemia-reperfusion and cerebral damage which cannot be explored in in vitro systems only; there is a need for animal models. In this study, we describe and evaluate the feasibility and efficiency of our simple rodent cardiac arrest model. METHODS Ten wistar rats were subjected to 9 and 10 minutes of cardiac arrest. Cardiac arrest was introduced with a mixture of the short-acting beta-blocking drug esmolol and potassium chloride. RESULTS All animals could be resuscitated within 1 minute, and survived until day 5.General health score and neurobehavioural testing indicated substantial impairment after cardiac arrest, without differences between groups. Histological examination of the hippocampus CA1 segment, the most vulnerable segment of the cerebrum, demonstrated extensive damage in the cresyl violet staining, as well as in the Fluoro-Jade B staining and in the Iba-1 staining, indicating recruitment of microglia after the hypoxic-ischaemic event. Again, there were no differences between the 9- and 10-minute cardiac arrest groups. DISCUSSION We were able to establish a simple and reproducible 9- and 10-minute rodent cardiac arrest models with a well-defined no-flow-time. Extensive damage can be found in the hippocampus CA1 segment. The lack of difference between 9- and 10-minute cardiac arrest time in the neuropsychological, the open field test and the histological evaluations is mainly due to the small sample size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The goal of the study was to assess the causes and analyze the cases of sudden cardiac death (SCD) victims referred to the department of forensic medicine in Lausanne, with a particular focus on sports-related fatalities including also leisure sporting activities. To date, no such published assessment has been done nor for Switzerland nor for the central Europe. METHODS: This is a retrospective study based on autopsy records of SCD victims, from 10 to 50 years of age, performed at the University Centre of Legal Medicine in Lausanne from 1995 to 2010. The study population was divided into two groups: sport-related (SR) and not sport-related (NSR) SCDs. RESULTS: During the study period, 188 cases of SCD were recorded: 166 (88%) were NSR and 22 (12%) SR. The mean age of the 188 victims was 37.3 +/- 10.1 years, with the majority of the cases being male (79%). A cause of death was established in 84%, and the pathology responsible for death varied according to the age of the victims. In the NSR group, the mean age was 38.2 +/- 9.2 years and there was 82% of male. Coronary artery disease (CAD) was the main diagnosis in the victims aged 30-50 years. The majority of morphologically normal hearts were observed in the 15-29 year age range. There was no case in the 10-14 year age range. In the SR group, 91% of victims died during leisure sporting activities. In this group the mean age was 30.5 +/- 13.5 years, with the majority being male (82%). The main cause of death was CAD, with 6 cases (27%) and a mean age of 40.8 +/- 5.5 years. The youngest victim with CAD was 33 years old. A morphologically normal heart was observed in 5 cases (23%), with a mean age of 24.4 +/- 14.9 years. The most frequently implicated sporting activities were hiking (26%) and swimming (17%). CONCLUSION: In this study, CAD was the most common cause of death in both groups. Although this pathology most often affects adults over 35 years of age, there were also some victims under 35 years of age in both groups. SCDs during sport are mostly related to leisure sporting activities, for which preventive measures are not yet usually established. This study highlights also the need to inform both athletes and non athletes of the cardiovascular risks during sport activities and the role of a forensic autopsy and registries involving forensic pathologists for SR SCD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current guidelines for the treatment of hypothermic cardiocirculatory arrest recommend extracorporeal life support and rewarming, using cardiopulmonary bypass or extracorporeal membrane oxygenation circuits. Both have design-related shortcomings which may result in prolonged reperfusion time or insufficient oxygen delivery to vital organs. This article describes clear advantages of minimally invasive extracorporeal circulation systems during emergency extracorporeal life support in hypothermic arrest. The technique of minimally invasive extracorporeal circulation for reperfusion and rewarming is represented by the case of a 59-year-old patient in hypothermic cardiocirculatory arrest at 25.3°C core temperature, with multiple trauma. With femoro-femoral cannulation performed under sonographic and echocardiographic guidance, extracorporeal life support was initiated using a minimally invasive extracorporeal circulation system. Perfusing rhythm was restored at 28°C. During rewarming on the mobile circuit, trauma surveys were completed and the treatment initiated. Normothermic weaning was successful on the first attempt, trauma surgery was completed and the patient survived neurologically intact. For extracorporeal resuscitation from hypothermic arrest, minimally invasive extracorporeal circulation offers all the advantages of conventional cardiopulmonary bypass and extracorporeal membrane oxygenation systems without their shortcomings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The movement of ions across specific channels embedded on the membrane of individual cardiomyocytes is crucial for the generation and propagation of the cardiac electric impulse. Emerging evidence over the past 20 years strongly suggests that the normal electric function of the heart is the result of dynamic interactions of membrane ion channels working in an orchestrated fashion as part of complex molecular networks. Such networks work together with exquisite temporal precision to generate each action potential and contraction. Macromolecular complexes play crucial roles in transcription, translation, oligomerization, trafficking, membrane retention, glycosylation, post-translational modification, turnover, function, and degradation of all cardiac ion channels known to date. In addition, the accurate timing of each cardiac beat and contraction demands, a comparable precision on the assembly and organizations of sodium, calcium, and potassium channel complexes within specific subcellular microdomains, where physical proximity allows for prompt and efficient interaction. This review article, part of the Compendium on Sudden Cardiac Death, discusses the major issues related to the role of ion channel macromolecular assemblies in normal cardiac electric function and the mechanisms of arrhythmias leading to sudden cardiac death. It provides an idea of how these issues are being addressed in the laboratory and in the clinic, which important questions remain unanswered, and what future research will be needed to improve knowledge and advance therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The noble gas xenon is considered as a neuroprotective agent, but availability of the gas is limited. Studies on neuroprotection with the abundant noble gases helium and argon demonstrated mixed results, and data regarding neuroprotection after cardiac arrest are scant. We tested the hypothesis that administration of 50% helium or 50% argon for 24 h after resuscitation from cardiac arrest improves clinical and histological outcome in our 8 min rat cardiac arrest model. METHODS Forty animals had cardiac arrest induced with intravenous potassium/esmolol and were randomized to post-resuscitation ventilation with either helium/oxygen, argon/oxygen or air/oxygen for 24 h. Eight additional animals without cardiac arrest served as reference, these animals were not randomized and not included into the statistical analysis. Primary outcome was assessment of neuronal damage in histology of the region I of hippocampus proper (CA1) from those animals surviving until day 5. Secondary outcome was evaluation of neurobehavior by daily testing of a Neurodeficit Score (NDS), the Tape Removal Test (TRT), a simple vertical pole test (VPT) and the Open Field Test (OFT). Because of the non-parametric distribution of the data, the histological assessments were compared with the Kruskal-Wallis test. Treatment effect in repeated measured assessments was estimated with a linear regression with clustered robust standard errors (SE), where normality is less important. RESULTS Twenty-nine out of 40 rats survived until day 5 with significant initial deficits in neurobehavioral, but rapid improvement within all groups randomized to cardiac arrest. There were no statistical significant differences between groups neither in the histological nor in neurobehavioral assessment. CONCLUSIONS The replacement of air with either helium or argon in a 50:50 air/oxygen mixture for 24 h did not improve histological or clinical outcome in rats subjected to 8 min of cardiac arrest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first manuscript, entitled "Time-Series Analysis as Input for Clinical Predictive Modeling: Modeling Cardiac Arrest in a Pediatric ICU" lays out the theoretical background for the project. There are several core concepts presented in this paper. First, traditional multivariate models (where each variable is represented by only one value) provide single point-in-time snapshots of patient status: they are incapable of characterizing deterioration. Since deterioration is consistently identified as a precursor to cardiac arrests, we maintain that the traditional multivariate paradigm is insufficient for predicting arrests. We identify time series analysis as a method capable of characterizing deterioration in an objective, mathematical fashion, and describe how to build a general foundation for predictive modeling using time series analysis results as latent variables. Building a solid foundation for any given modeling task involves addressing a number of issues during the design phase. These include selecting the proper candidate features on which to base the model, and selecting the most appropriate tool to measure them. We also identified several unique design issues that are introduced when time series data elements are added to the set of candidate features. One such issue is in defining the duration and resolution of time series elements required to sufficiently characterize the time series phenomena being considered as candidate features for the predictive model. Once the duration and resolution are established, there must also be explicit mathematical or statistical operations that produce the time series analysis result to be used as a latent candidate feature. In synthesizing the comprehensive framework for building a predictive model based on time series data elements, we identified at least four classes of data that can be used in the model design. The first two classes are shared with traditional multivariate models: multivariate data and clinical latent features. Multivariate data is represented by the standard one value per variable paradigm and is widely employed in a host of clinical models and tools. These are often represented by a number present in a given cell of a table. Clinical latent features derived, rather than directly measured, data elements that more accurately represent a particular clinical phenomenon than any of the directly measured data elements in isolation. The second two classes are unique to the time series data elements. The first of these is the raw data elements. These are represented by multiple values per variable, and constitute the measured observations that are typically available to end users when they review time series data. These are often represented as dots on a graph. The final class of data results from performing time series analysis. This class of data represents the fundamental concept on which our hypothesis is based. The specific statistical or mathematical operations are up to the modeler to determine, but we generally recommend that a variety of analyses be performed in order to maximize the likelihood that a representation of the time series data elements is produced that is able to distinguish between two or more classes of outcomes. The second manuscript, entitled "Building Clinical Prediction Models Using Time Series Data: Modeling Cardiac Arrest in a Pediatric ICU" provides a detailed description, start to finish, of the methods required to prepare the data, build, and validate a predictive model that uses the time series data elements determined in the first paper. One of the fundamental tenets of the second paper is that manual implementations of time series based models are unfeasible due to the relatively large number of data elements and the complexity of preprocessing that must occur before data can be presented to the model. Each of the seventeen steps is analyzed from the perspective of how it may be automated, when necessary. We identify the general objectives and available strategies of each of the steps, and we present our rationale for choosing a specific strategy for each step in the case of predicting cardiac arrest in a pediatric intensive care unit. Another issue brought to light by the second paper is that the individual steps required to use time series data for predictive modeling are more numerous and more complex than those used for modeling with traditional multivariate data. Even after complexities attributable to the design phase (addressed in our first paper) have been accounted for, the management and manipulation of the time series elements (the preprocessing steps in particular) are issues that are not present in a traditional multivariate modeling paradigm. In our methods, we present the issues that arise from the time series data elements: defining a reference time; imputing and reducing time series data in order to conform to a predefined structure that was specified during the design phase; and normalizing variable families rather than individual variable instances. The final manuscript, entitled: "Using Time-Series Analysis to Predict Cardiac Arrest in a Pediatric Intensive Care Unit" presents the results that were obtained by applying the theoretical construct and its associated methods (detailed in the first two papers) to the case of cardiac arrest prediction in a pediatric intensive care unit. Our results showed that utilizing the trend analysis from the time series data elements reduced the number of classification errors by 73%. The area under the Receiver Operating Characteristic curve increased from a baseline of 87% to 98% by including the trend analysis. In addition to the performance measures, we were also able to demonstrate that adding raw time series data elements without their associated trend analyses improved classification accuracy as compared to the baseline multivariate model, but diminished classification accuracy as compared to when just the trend analysis features were added (ie, without adding the raw time series data elements). We believe this phenomenon was largely attributable to overfitting, which is known to increase as the ratio of candidate features to class examples rises. Furthermore, although we employed several feature reduction strategies to counteract the overfitting problem, they failed to improve the performance beyond that which was achieved by exclusion of the raw time series elements. Finally, our data demonstrated that pulse oximetry and systolic blood pressure readings tend to start diminishing about 10-20 minutes before an arrest, whereas heart rates tend to diminish rapidly less than 5 minutes before an arrest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report here that during a permanent cardiac arrest, rodent brain tissue is “physiologically” preserved in situ in a particular quiescent state. This state is characterized by the absence of electrical activity and by a critical period of 5–6 hr during which brain tissue can be reactivated upon restoration of a simple energy (glucose/oxygen) supply. In rat brain slices prepared 1–6 hr after cardiac arrest and maintained in vitro for several hours, cells with normal morphological features, intrinsic membrane properties, and spontaneous synaptic activity were recorded from various brain regions. In addition to functional membrane channels, these neurons expressed mRNA, as revealed by single-cell reverse transcription–PCR, and could synthesize proteins de novo. Slices prepared after longer delays did not recover. In a guinea pig isolated whole-brain preparation that was cannulated and perfused with oxygenated saline 1–2 hr after cardiac arrest, cell activity and functional long-range synaptic connections could be restored although the electroencephalogram remained isoelectric. Perfusion of the isolated brain with the γ-aminobutyric acid A receptor antagonist picrotoxin, however, could induce self-sustained temporal lobe epilepsy. Thus, in rodents, the duration of cardiac arrest compatible with a short-term recovery of neuronal activity is much longer than previously expected. The analysis of the parameters that regulate this duration may bring new insights into the prevention of postischemic damages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heme oxygenase-1 (HO-1) is an enzyme induced by hypoxia and reperfusion injury, and is associated with organ dysfunction in critically ill patients. Patients resuscitated from out-of-hospital cardiac arrest (OHCA) are subjected to hypoxemia, brain injury, and organ dysfunction. Accordingly, we studied HO-1 among these patients. A total of 143 OHCA patients resuscitated from a shockable initial rhythm and admitted to an ICU were included, with plasma HO-1 measured at ICU admission and at 24 h. We analyzed the associations between plasma HO-1 and time to return of spontaneous circulation (ROSC), 90-day mortality, and 12-month Cerebral Performance Category (CPC). HO-1 plasma concentrations were higher after OHCA compared with controls. HO-1 concentrations at admission and on day 1 associated with ROSC (P = 0.002 to P = 0.003). Admission and day 1 HO-1 plasma concentrations were higher in 90-day non-survivors than in survivors (P = 0.017, 0.026). In addition, poor neurological outcome (CPC 3-5) was associated with higher HO-1 plasma levels at admission (P = 0.024). Admission plasma HO-1 levels had an AUC of 0.623 to predict 90-day mortality and an AUC of 0.611 to predict CPC 3 to 5. In conclusion, we found that higher HO-1 plasma levels are associated with longer ROSC and poor long-term outcome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM To assess whether the established cardiovascular biomarker N-terminal pro-B-type natriuretic peptide (NT-proBNP) provides prognostic information in patients with out-of-hospital cardiac arrest due to ventricular tachycardia or fibrillation (OHCA-VT/VF). METHODS We measured NT-proBNP levels in 155 patients with OHCA-VT/VF enrolled into a prospective multicenter observational study in 21 ICUs in Finland. Blood samples were drawn <6h of OHCA-VT/VF and later after 24h, 48h, and 96h. The end-points were mortality and neurological outcome classified according to Cerebral Performance Category (CPC) after one year. NT-proBNP levels were compared to high-sensitivity troponin T (hs-TnT) levels and established risk scores. RESULTS NT-proBNP levels were higher in non-survivors compared to survivors on study inclusion (median 1003 [quartile (Q) 1-3 502-2457] vs. 527 [179-1284]ng/L, p=0.001) and after 24h (1913 [1012-4573] vs. 1080 [519-2210]ng/L, p<0.001). NT-proBNP levels increased from baseline to 96h after ICU admission (p<0.001). NT-proBNP levels were significantly correlated to hs-TnT levels after 24h (rho=0.27, p=0.001), but not to hs-TnT levels on study inclusion (rho=0.05, p=0.67). NT-proBNP levels at all time points were associated with clinical outcome, but only NT-proBNP levels after 24h predicted mortality and poor neurological outcome, defined as CPC 3-5, in models that adjusted for SAPS II and SOFA scores. hs-TnT levels did not add prognostic information to NT-proBNP measurements alone. CONCLUSION NT-proBNP levels at 24h improved risk assessment for poor outcome after one year on top of established risk indices, while hs-TnT measurements did not further add to risk prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The application of therapeutic hypothermia (TH) for 12 to 24 hours following out-of-hospital cardiac arrest (OHCA) has been associated with decreased mortality and improved neurological function. However, the optimal duration of cooling is not known. We aimed to investigate whether targeted temperature management (TTM) at 33 ± 1 °C for 48 hours compared to 24 hours results in a better long-term neurological outcome. METHODS The TTH48 trial is an investigator-initiated pragmatic international trial in which patients resuscitated from OHCA are randomised to TTM at 33 ± 1 °C for either 24 or 48 hours. Inclusion criteria are: age older than 17 and below 80 years; presumed cardiac origin of arrest; and Glasgow Coma Score (GCS) <8, on admission. The primary outcome is neurological outcome at 6 months using the Cerebral Performance Category score (CPC) by an assessor blinded to treatment allocation and dichotomised to good (CPC 1-2) or poor (CPC 3-5) outcome. Secondary outcomes are: 6-month mortality, incidence of infection, bleeding and organ failure and CPC at hospital discharge, at day 28 and at day 90 following OHCA. Assuming that 50 % of the patients treated for 24 hours will have a poor outcome at 6 months, a study including 350 patients (175/arm) will have 80 % power (with a significance level of 5 %) to detect an absolute 15 % difference in primary outcome between treatment groups. A safety interim analysis was performed after the inclusion of 175 patients. DISCUSSION This is the first randomised trial to investigate the effect of the duration of TTM at 33 ± 1 °C in adult OHCA patients. We anticipate that the results of this trial will add significant knowledge regarding the management of cooling procedures in OHCA patients. TRIAL REGISTRATION NCT01689077.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

THE AIM OF THE STUDY There are limited data on blood pressure targets and vasopressor use following cardiac arrest. We hypothesized that hypotension and high vasopressor load are associated with poor neurological outcome following out-of-hospital cardiac arrest (OHCA). METHODS We included 412 patients with OHCA included in FINNRESUSCI study conducted between 2010 and 2011. Hemodynamic data and vasopressor doses were collected electronically in one, two or five minute intervals. We evaluated thresholds for time-weighted (TW) mean arterial pressure (MAP) and outcome by receiver operating characteristic (ROC) curve analysis, and used multivariable analysis adjusting for co-morbidities, factors at resuscitation, an illness severity score, TW MAP and total vasopressor load (VL) to test associations with one-year neurologic outcome, dichotomized into either good (1-2) or poor (3-5) according to the cerebral performance category scale. RESULTS Of 412 patients, 169 patients had good and 243 patients had poor one-year outcomes. The lowest MAP during the first six hours was 58 (inter-quartile range [IQR] 56-61) mmHg in those with a poor outcome and 61 (59-63) mmHg in those with a good outcome (p<0.01), and lowest MAP was independently associated with poor outcome (OR 1.02 per mmHg, 95% CI 1.00-1.04, p=0.03). During the first 48h the median (IQR) of the TW mean MAP was 80 (78-82) mmHg in patients with poor, and 82 (81-83) mmHg in those with good outcomes (p=0.03) but in multivariable analysis TWA MAP was not associated with outcome. Vasopressor load did not predict one-year neurologic outcome. CONCLUSIONS Hypotension occurring during the first six hours after cardiac arrest is an independent predictor of poor one-year neurologic outcome. High vasopressor load was not associated with poor outcome and further randomized trials are needed to define optimal MAP targets in OHCA patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sudden cardiac death in small animals is uncommon but often occurs due to cardiac conduction defects or myocardial diseases. Primary cardiac conduction defects are mainly caused by mutations in genes involved in impulse conduction processes (e.g., gapjunction genes and transcription factors) or repolarisation processes (e.g., ion-channel genes), whereas primary cardiomyopathies are mainly caused by defective force generation or force transmission due to gene mutations in either sarcomeric or cytoskeleton proteins. Although over 50 genes have been identified in humans directly or indirectly related to sudden cardiac death, no genetic aetiologies have been identified in small animals. Sudden cardiac deaths have been also reported in German Shepherds and Boxers. A better understanding of molecular genetic aetiologies for sudden cardiac death will be required for future study toward unveiling actiology in sudden cardiac death in small animals. (c) 2005 Elsevier Ltd. All rights reserved.