927 resultados para subcompositional coherence
Resumo:
Purpose: To evaluate the reproducibility of Cirrus-SD OCT measurements and to compare central macular thickness (CMT) measurements between TD-Stratus and SD-Cirrus OCT in patients with active exudative AMD. Methods: Consecutive case series of patients with active exudative AMD seen in the Medical Retina Department. Patients underwent 1 scan with Stratus (macular thickness map protocol) and 5 scans with Cirrus (Macular Cube protocol) at the same visit by the same experienced examiner. To be included, patients best-corrected visual acuity (BCVA) had to be >20/200 while all scans had to be of sufficient quality, well-centered and at least one Cirrus scan with CMT >300 microns. The repeatability of the SD Cirrus was estimated by using all 5 CMT measurements and the mean of the Cirrus measurements was compared with the CMT obtained by TD Stratus. Results: Cirrus OCT demonstrated high intraobserver repeatability at the central foveal region (ICC 96%). The mean of the CMT measurements was 321microns for Stratus and 387 microns for Cirrus. The average difference was 65m (SD=30). The coefficient of concordance between Stratus and Cirrus CMT measurements was rho=0,749 with a high precision and a moderate accuracy. The equation of the line of regression between Stratus and meanCirrus is given by the following: M_stratus = 0,848 x m_cirrus - 4,496 (1).Conclusions: The Cirrus macular cube protocol allows reproducible CMT measurements in patients with active exudative AMD. In cases of upgrading from TD to SD use and vice versa, there is the possibility to predict the measurements by using the equation (1). These real life data and conclusions can help in improving our clinical management of patients with neovascular AMD.
Resumo:
PURPOSE: To report the time course of retinal morphologic changes in a patient with acute retinal pigment epithelitis (ARPE) using spectral domain optical coherence tomography (SD-OCT). METHODS: A 30-year old man was referred for blurred vision of his right eye after five days that appeared suddenly 15 days after recovery from a flu-like syndrome. SD-OCT was performed immediately, followed by fluorescein and infracyanine angiography at eight days and then at three weeks. RESULTS: At presentation, a bubble of sub-macular deposit was observed on the right macula with central golden micronodules in a honeycomb pattern. SD-OCT showed an "anterior dislocation" of all the retinal layers up to the inner/outer segment (IS/OS) line and irregular deposits at the OS level together with thickening of the retinal pigment epithelial (RPE) layer. As visual acuity increased, eight days later, the OCT showed reduction of the sub-retinal deposits and an abnormal hyperflectivity of the sub-retinal and RPE layers was observed. The patient showed a positive serology for picornavirus. DISCUSSION: The acute SD-OCT sections of this patient with ARPE were compared with histological sections of a 35 day old Royal College of Surgeons rat. Similar findings could be observed, with preservation of the IS/OS line and accumulation of debris at the OS level, suggesting that ARPE symptoms could result from a transient phagocytic dysfunction of the RPE at the fovea, inducing reversible accumulation of undigested OS. Picornaviruses comprising enterovirus and coxsachievirus described as being associated with acute chorioretinitis. In this case, it was responsible for ARPE. CONCLUSION: We hypothesize that ARPE syndrome results from a transient dysfunction of RPE, which can occur as a post viral reaction.
Resumo:
PURPOSE: To characterize perifoveal intraretinal cavities observed around full-thickness macular holes (MH) using en face optical coherence tomography and to establish correlations with histology of human and primate maculae. DESIGN: Retrospective nonconsecutive observational case series. METHODS: Macular en face scans of 8 patients with MH were analyzed to quantify the areas of hyporeflective spaces, and were compared with macular flat mounts and sections from 1 normal human donor eye and 2 normal primate eyes (Macaca fascicularis). Immunohistochemistry was used to study the distribution of glutamine synthetase, expressed by Müller cells, and zonula occludens-1, a tight-junction protein. RESULTS: The mean area of hyporeflective spaces was lower in the inner nuclear layer (INL) than in the complex formed by the outer plexiform (OPL) and the Henle fiber layers (HFL): 5.0 × 10(-3) mm(2) vs 15.9 × 10(-3) mm(2), respectively (P < .0001, Kruskal-Wallis test). In the OPL and HFL, cavities were elongated with a stellate pattern, whereas in the INL they were rounded and formed vertical cylinders. Immunohistochemistry confirmed that Müller cells followed a radial distribution around the fovea in the frontal plane and a "Z-shaped" course in the axial plane, running obliquely in the OPL and HFL and vertically in the inner layers. In addition, zonula occludens-1 co-localized with Müller cells within the complex of OPL and HFL, indicating junctions in between Müller cells and cone axons. CONCLUSION: The dual profile of cavities around MHs correlates with Müller cell morphology and is consistent with the hypothesis of intra- or extracellular fluid accumulation along these cells.
Resumo:
After discovery of cuprates, a search for new high temperature superconducting families began and it led to the discovery of layered pnictide compounds with critical temperatures limited up to ∼56 K. Pnictides consist elements from Group V of Periodic Table (nitrogen, phosphorus, arsenic, antimony and bismuth). In this work coherence length h in mixed state of pnictide superconductors is calculated numerically. In calculation is taken into account interband and intraband impurity scattering in framework of quasiclassical Eilenberger theory for s± pairing symmetry. Differences between Ginzburg-Landau and Eilenberger theories is shown and the comparison with existing models is done.
Resumo:
After discovery of cuprates, a search for new high temperature superconducting families began and it led to the discovery of layered pnictide compounds with critical temperatures limited up to ~56 K. Pnictides consist elements from Group V of Periodic Table (nitrogen, phosphorus, arsenic, antimony and bismuth). In this work coherence length ξh in mixed state of pnictide superconductors is calculated numerically. In calculation is taken into account interband and intraband impurity scattering in framework of quasiclassical Eilenberger theory for s± pairing symmetry. Differences between Ginzburg-Landau and Eilenberger theories is shown and the comparison with existing models is done.
Resumo:
The present study proposes to apply magnitude-squared coherence (MSC) to the somatosensory evoked potential for identifying the maximum driving response band. EEG signals, leads [Fpz'-Cz'] and [C3'-C4'], were collected from two groups of normal volunteers, stimulated at the rate of 4.91 (G1: 26 volunteers) and 5.13 Hz (G2: 18 volunteers). About 1400 stimuli were applied to the right tibial nerve at the motor threshold level. After applying the anti-aliasing filter, the signals were digitized and then further low-pass filtered (200 Hz, 6th order Butterworth and zero-phase). Based on the rejection of the null hypothesis of response absence (MSC(f) > 0.0060 with 500 epochs and the level of significance set at a = 0.05), the beta and gamma bands, 15-66 Hz, were identified as the maximum driving response band. Taking both leads together ("logical-OR detector", with a false-alarm rate of a = 0.05, and hence a = 0.0253 for each derivation), the detection exceeded 70% for all multiples of the stimulation frequency within this range. Similar performance was achieved for MSC of both leads but at 15, 25, 35, and 40 Hz. Moreover, the response was detected in [C3'-C4'] at 35.9 Hz and in [Fpz'-Cz'] at 46.2 Hz for all members of G2. Using the "logical-OR detector" procedure, the response was detected at the 7th multiple of the stimulation frequency for the series as a whole (considering both groups). Based on these findings, the MSC technique may be used for monitoring purposes.
Resumo:
The objective of the present study was to determine the adequate cortical regions based on the signal-to-noise ratio (SNR) for somatosensory evoked potential (SEP) recording. This investigation was carried out using magnitude-squared coherence (MSC), a frequency domain objective response detection technique. Electroencephalographic signals were collected (International 10-20 System) from 38 volunteers, without history of neurological pathology, during somatosensory stimulation. Stimuli were applied to the right posterior tibial nerve at the rate of 5 Hz and intensity slightly above the motor threshold. Response detection was based on rejecting the null hypothesis of response absence (significance level α= 0.05 and M = 500 epochs). The best detection rates (maximum percentage of volunteers for whom the response was detected for the frequencies between 4.8 and 72 Hz) were obtained for the parietal and central leads mid-sagittal and ipsilateral to the stimulated leg: C4 (87%), P4 (82%), Cz (89%), and Pz (89%). The P37-N45 time-components of the SEP can also be observed in these leads. The other leads, including the central and parietal contralateral and the frontal and fronto-polar leads, presented low detection capacity. If only contralateral leads were considered, the centro-parietal region (C3 and P3) was among the best regions for response detection, presenting a correspondent well-defined N37; however, this was not observed in some volunteers. The results of the present study showed that the central and parietal regions, especially sagittal and ipsilateral to the stimuli, presented the best SNR in the gamma range. Furthermore, these findings suggest that the MSC can be a useful tool for monitoring purposes.
Resumo:
The striatum, the largest component of the basal ganglia, is usually subdivided into associative, motor and limbic components. However, the electrophysiological interactions between these three subsystems during behavior remain largely unknown. We hypothesized that the striatum might be particularly active during exploratory behavior, which is presumably associated with increased attention. We investigated the modulation of local field potentials (LFPs) in the striatum during attentive wakefulness in freely moving rats. To this end, we implanted microelectrodes into different parts of the striatum of Wistar rats, as well as into the motor, associative and limbic cortices. We then used electromyograms to identify motor activity and analyzed the instantaneous frequency, power spectra and partial directed coherence during exploratory behavior. We observed fine modulation in the theta frequency range of striatal LFPs in 92.5 ± 2.5% of all epochs of exploratory behavior. Concomitantly, the theta power spectrum increased in all striatal channels (P < 0.001), and coherence analysis revealed strong connectivity (coefficients >0.7) between the primary motor cortex and the rostral part of the caudatoputamen nucleus, as well as among all striatal channels (P < 0.001). Conclusively, we observed a pattern of strong theta band activation in the entire striatum during attentive wakefulness, as well as a strong coherence between the motor cortex and the entire striatum. We suggest that this activation reflects the integration of motor, cognitive and limbic systems during attentive wakefulness.
Resumo:
Optical coherence tomography (OCT) is a promising medical imaging technique that uses light to capture real-time cross-sectional images from biological tissues in micrometer resolution. Commercially available optical coherence tomography systems are employed in diverse applications, including art conservation and diagnostic medicine, notably in cardiology and ophthalmology. Application of this technology in the brain may enable distinction between white matter and gray matter, and obtainment of detailed images from within the encephalon. We present, herein, the in vivo implementation of OCT imaging in the rat brain striatum. For this, two male 60-day-old rats (Rattus norvegicus, Albinus variation, Wistar) were stereotactically implanted with guide cannulas into the striatum to guide a 2.7-French diameter high-definition OCT imaging catheter (Dragonfly™, St. Jude Medical, USA). Obtained images were compared with corresponding histologically stained sections to collect imaging samples. A brief analysis of OCT technology and its current applications is also reported, as well as intra-cerebral OCT feasibility on brain mapping during neurosurgical procedures.
Resumo:
Optical coherence tomography (OCT) is a novel intracoronary imaging application for the assessment of native lesions and coronary stents. The purpose of this thesis was to evaluate the safety and feasibility of frequency-domain OCT (FD-OCT) based on experiences of the Satakunta Central Hospital (I). Early vascular healing was evaluated after implantation of endothelial progenitor cell capturing (II) and bio-active titanium-nitride-oxide coated stents (III) in two studies, each with 20 patients. Vascular healing was also compared after implantation of bio-active and everolimus-eluting stents on 28 patients after 9-month follow-up (IV). Long-term vascular healing of bio-active and paclitaxel-eluting stents was assessed in the last study with 18 patients (V). The results indicate that FD-OCT is safe and feasible (I). Both bio-active and endothelial progenitor cell capturing stents showed near-complete endothelialisation after one-month follow-up, which is desirable when prolonged dual anti-platelet therapy needs to be avoided after stenting (II and III). Endothelialisation of bio-active stents showed a predictable pattern at mid-term and long-term follow up (IV and V). Endothelialisation of everolimus-eluting stents was not complete at 9 months follow-up, which may suggest that interruption of dual antiplatelet therapy at this time point may not be safe (IV). Finally, delayed vascular healing may be present in patients treated with paclitaxel-eluting stents as long as 4 years from implantation, which reinforces the previously raised concerns on the long-term safety of this device (V).
Resumo:
This study explored changes in scalp electrophysiology across two Working Memory (WM) tasks and two age groups. Continuous electroencephalography (EEG) was recorded from 18 healthy adults (18-34 years) and 12 healthy adolescents (14-17) during the performance of two Oculomotor Delayed Response (ODR) WM tasks; (i.e. eye movements were the metric of motor response). Delay-period, EEG data in the alpha frequency was sampled from anterior and parietal scalp sites to achieve a general measure of frontal and parietal activity, respectively. Frontal-parietal, alpha coherence was calculated for each participant for each ODR-WM task. Coherence significantly decreased in adults moving across the two ODR tasks, whereas, coherence significantly increased in adolescents moving across the two ODR tasks. The effects of task in the adolescent and adult groups were large and medium, respectively. Within the limits of this study, the results provide empirical support that WM development during adolescence include complex, qualitative, change.
Resumo:
In a seminal contribution, Hansson has demonstrated that the family of decisive coalitions associated with an Arrovian social welfare function forms an ultrafilter. If the population under consideration is infinite, his result implies the existence of nondictatorial social welfare functions. He goes on to show that if transitivity is weakened to quasi-transitivity as the coherence property imposed on a social relation, the set of decisive coalitions is a filter. We examine the structure of decisive coalitions and analogous concepts with alternative coherence properties, namely, acyclicity and Suzumura consistency, and without assuming that the social relation is complete.
Resumo:
La supériorité des prothèses mandibulaires retenues par deux implants (IODs) sur les prothèses conventionnelles (CDs) nécessitent d’être éclaircies notamment en rapport à leur influence sur la qualité de vie reliée à la santé bucco-dentaire (OHRQoL) ainsi que sur la stabilité de cet effet de traitement. De plus, l’influence des facteurs psychologiques, tel que le sens de cohérence (SOC), sur l’effet de traitement reste encore inconnue. Le but de cette étude est de déterminer l’amplitude de l’influence du port des IODs et des CDs sur l’OHRQoL et d’évaluer la stabilité de l’effet de traitement dans le temps, tout en prenant en considération le niveau du SOC. MÉTHODOLOGIE: Des participants édentés (n=172, âge moyen 71, SD = 4.5) ayant reçu des CDs ou des IODs ont été suivis sur une période de deux ans. L’OHRQoL a été évaluée à l’aide du questionnaire « Oral Health Impact Profile (OHIP -20) » et ce avant le traitement et à chacun des deux suivis. Le SOC a été évalué à l’aide du questionnaire « The Orientation to Life (SOC -13) » à chacun des deux suivis. Des analyses statistiques ont été effectuées pour évaluer les différences intra et entre groupes (analyses statistiques descriptives, bivariées et multivariées). RÉSULTATS: Une amélioration statistiquement significative de l’OHRQoL entre les statuts avant et après traitement a été notée dans les deux groupes (Wilks’s Lambda = 0.473, F (1,151) = 157.31, p < 0.0001). L’amplitude de l’effet du traitement IOD est 1.5 fois plus grande que celle du traitement CD. Ces résultats ont été stables pendant les deux années d’étude et ils n’ont pas été influencés par le SOC. CONCLUSION: Le traitement IOD amène une meilleure OHRQoL à long terme en comparaison avec le traitement CD et ce sans influence du niveau du SOC. Ces résultats sont cliniquement significatifs et confirment la supériorité des IODs sur les CDs.
Resumo:
Cet article a précédemment été publié par la Supreme Court Law Review (Second Series).