926 resultados para sub-surface horizontal flow
Resumo:
This master´s thesis presents a reliability study conducted among onshore oil fields in the Potiguar Basin (RN/CE) of Petrobras company, Brazil. The main study objective was to build a regression model to predict the risk of failures that impede production wells to function properly using the information of explanatory variables related to wells such as the elevation method, the amount of water produced in the well (BSW), the ratio gas-oil (RGO), the depth of the production bomb, the operational unit of the oil field, among others. The study was based on a retrospective sample of 603 oil columns from all that were functioning between 2000 and 2006. Statistical hypothesis tests under a Weibull regression model fitted to the failure data allowed the selection of some significant predictors in the set considered to explain the first failure time in the wells
Resumo:
The study that resulted in this dissertation was developed at OU RNCE PETROBRAS, in Natal, which implemented a project of rational use and reuse of water, including use of wastewater from a Sewage Treatment Plant (STP) already in place, diluted with water from own wells for irrigation of green area of the building complex corporate enterprise. Establish a methodology that can serve as guidelines for future projects controlled reuse of water like this was the objective of this research. Been proposed, implemented and evaluated three instruments of sanitary and environmental control: 1) adaptation of sewage treatment plant and quality control of the treated effluent 2) analysis of soil-nutrient interaction in the irrigated area, 3) knowledge of the local hydrogeology, especially with regard to the direction of flow of the aquifer and location of collection wells of Companhia de Águas e Esgotos do Rio Grande do Norte (CAERN) situated in the surroundings. These instruments have proven sufficient and appropriate to ensure the levels of sanitary and environmental control proposed and studied, which were: a) control of water quality off the STP and the output of the irrigation reservoir, b) control of water quality sub surface soil and assessment of progress on soil composition, c) assessment of water quality in the aquifer. For this, we must: 1) establishing the monitoring plan of the STP and its effluent quality sampling points and defining the parameters of analysis, improve the functioning of that identifying the adequacy of flow and screening as the main factors of operational control, and increase the efficiency of the station to a relatively low cost, using additional filters, 2) propose, implement and adapt simple collectors to assess the quality of water percolating into the soil of the irrigated area, 3) determine the direction of groundwater flow in the area study and select the wells for monitoring of the aquifer.
Resumo:
The structural framework of the sedimentary basins usually plays an important role in oil prospects and reservoirs. Geometry, interconectivity and density of the brittle features developed during basin evolution could change the permo-porous character of the rocks involved in generation, migration and entrapment of fluid flow. Once the structural characterization of the reservois using only sub-surface data is not an easy task, many studies are focused in analogous outcrops trying to understand the main processes by which brittle tectonic is archieved. In the Santana do Acaraú region (Ceará state, NE Brazil) a pack of conglomeratic sandstone (here named CAC) has its geometry controlled mainly by NE trending faults, interpreted as related to reactivation of a precambrian Sobral Pedro II Lineament (LSP-II). Geological mapping of the CAC showed a major NE-SW trending synform developed before its complete lithification during a dextral transpression. This region was then selected to be studied in details in order of constrain the cretaceous deformation and so help the understanding the deformation of the basins along the brazilian equatorial margin. In order to characterize the brittle deformation in different scales, I study some attributes of the fractures and faults such as orientation, density, kinematic, opening, etc., through scanlines in satellite images, outcrops and thin sections. The study of the satellite images showed three main directions of the macrostructures, N-S, NE-SW and E-W. Two of theses features (N-S and E-W) are in aggreement with previous geophysical data. A bimodal pattern of the lineaments in the CAC´s basement rocks has been evidenciated by the NE and NW sets of structures obtained in the meso and microscale data. Besides the main dextral transpression two others later events, developed when the sediments were complety lithified, were recognized in the area. The interplay among theses events is responsible for the compartimentation of the CAC in several blocks along within some structural elements display diferents orientations. Based on the variation in the S0 orientation, the CAC can be subdivided in several domains. Dispite of the variations in orientations of the fractures/faults in the diferents domains, theses features, in the meso and microscopic scale, are concentrated in two sets (based on their trend) in all domains which show similar orientation of the S0 surface. Thus the S0 orientation was used to group the domains in three major sets: i) The first one is that where S0 is E-W oriented: the fractures are oriented mainly NE with the development of a secondary NW trending; ii) S0 trending NE: the fractures are concentrated mainly along the trend NW with a secondary concentration along the NE trend; iii) The third set, where S0 is NS the main fractures are NE and the secondary concentration is NW. Another analized parameter was the fault/fracture length. This attribute was studied in diferent scales trying to detect the upscale relationship. A terrain digital model (TDM) was built with the brittlel elements supperposed. This model enhanced a 3D visualization of the area as well as the spatial distribution of the fault/fractures. Finally, I believe that a better undertanding of the brittle tectonic affecting both CAC and its nearby basement will help the future interpretations of the tectonic envolved in the development of the sedimentary basins of the brazilian equatorial margin and their oil reservoirs and prospects, as for instance the Xaréu field in the Ceará basin, which subsurface data could be correlated with the surface ones
Resumo:
We study the problem of the evolution of the free surface of a fluid in a saturated porous medium, bounded from below by a. at impermeable bottom, and described by the Laplace equation with moving-boundary conditions. By making use of a convenient conformal transformation, we show that the solution to this problem is equivalent to the solution of the Laplace equation on a fixed domain, with new variable coefficients, the boundary conditions. We use a kernel of the Laplace equation which allows us to write the Dirichlet-to-Neumann operator, and in this way we are able to find an exact differential-integral equation for the evolution of the free surface in one space dimension. Although not amenable to direct analytical solutions, this equation turns out to allow an easy numerical implementation. We give an explicit illustrative case at the end of the article.
Resumo:
Fatigue crack initiation occurs at the surface, although sub surface nucleation has also been reported. Localized imperfections like inclusions close to surface and surface small pits can result in crack sources. Coatings are not always beneficial by fatigue point of view too. Mechanical properties of the covering material can change considerably the fatigue behavior of base metal due to residual surface stresses, to micro cracks or to hydrogen embrittlement. This paper is concerned with analysis of electrolytic etch on the fatigue resistance of a 35NCD16 high strength steel in a mechanical condition of (1760 - 1960) MPa, and analysis of electroplated hard chromium effects on the fatigue resistance in a strength condition of 989 MPa. Hardness impression was used as a reference parameter in case of electrolytic etch. In both cases, experimental data showed that fatigue strength of 35NCD16 steel was considerably reduced. Copyright © 2001 Society of Automotive Engineers, Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pelo uso de técnicas mais baratas, como a do SDDC, é possível determinar níveis traços de arsênio em cabelo; entretanto esta técnica apresenta alguns inconvenientes como baixa estabilidade e o odor desagradável da piridina. A piridina foi substituída por trietanolamina/CHCl3 e as características analíticas do complexo foram estudadas. O complexo foi estável por 270 minutos, a faixa de aplicação da lei de Beer foi de 0,0 a 25,0 mg As, a repetibilidade foi de 0,028 mg As, o limite de detecção foi de 18,6 mg de As/L e a sensibilidade (e)? de 1,12 104 L.mol-1.cm-1. O método foi aplicado à amostras de cabelo. A lavagem das amostras foi feita com extran e água desionizada e seca em estufa (40-60ºC). 0,1000 g de amostra foi submetida à 11 métodos de digestão. O melhor método foi o que usou uma solução 1:1 de HNO3 e H2SO4 concentrados em temperatura de 100-110ºC com evaporação até fumos de SO3. O tempo de abertura é um inconveniente neste tipo de digestão.
Resumo:
The availability of water shapes life in the western United States, and much of the water in the region originates in the Rocky Mountains. Few studies, however, have explicitly examined the history of water levels in the Rocky Mountains during the Holocene. Here, we examine the past levels of three lakes near the Continental Divide in Montana and Colorado to reconstruct Holocene moisture trends. Using transects of sediment cores and sub-surface geophysical profiles from each lake, we find that mid-Holocene shorelines in the small lakes (4–110 ha) were as much as ~10 m below the modern lake surfaces. Our results are consistent with existing evidence from other lakes and show that a wide range of settings in the region were much drier than today before 3000–2000 years ago. We also discuss evidence for millennial-scale moisture variation, including an abruptly-initiated and -terminated wet period in Colorado from 4400 to 3700 cal yr BP, and find only limited evidence for low-lake stands during the past millennium. The extent of low-water levels during the mid-Holocene, which were most severe and widespread ca. 7000–4500 cal yr BP, is consistent with the extent of insolation-induced aridity in previously published regional climate model simulations. Like the simulations, the lake data provide no evidence for enhanced zonal flow during the mid-Holocene, which has been invoked to explain enhanced mid-continent aridity at the time. The data, including widespread evidence for large changes on orbital time scales and for more limited changes during the last millennium, confirm the ability of large boundary-condition changes to push western water supplies beyond the range of recent natural variability.
Resumo:
A two-stage bioreactor was operated for a period of 140 days in order to develop a post-treatment process based on anaerobic bioxidation of sulfite. This process was designed for simultaneously treating the effluent and biogas of a full-scale UASB reactor, containing significant concentrations of NH4 and H2S, respectively. The system comprised of two horizontal-flow bed-packed reactors operated with different oxygen concentrations. Ammonium present in the effluent was transformed into nitrates in the first aerobic stage. The second anaerobic stage combined the treatment of nitrates in the liquor with the hydrogen sulfide present in the UASB-reactor biogas. Nitrates were consumed with a significant production of sulfate, resulting in a nitrate removal rate of 0.43 kg N m(3) day(-1) and a parts per thousand yen92 % efficiency. Such a removal rate is comparable to those achieved by heterotrophic denitrifying systems. Polymeric forms of sulfur were not detected (elementary sulfur); sulfate was the main product of the sulfide-based denitrifying process. S-sulfate was produced at a rate of about 0.35 kg m(3) day(-1). Sulfur inputs as S-H2S were estimated at about 0.75 kg m(3) day(-1) and Chemical Oxygen Demand (COD) removal rates did not vary significantly during the process. DGGE profiling and 16S rRNA identified Halothiobacillus-like species as the key microorganism supporting this process; such a strain has not yet been previously associated with such bioengineered systems.
Resumo:
Computational fluid dynamics, CFD, is becoming an essential tool in the prediction of the hydrodynamic efforts and flow characteristics of underwater vehicles for manoeuvring studies. However, when applied to the manoeuvrability of autonomous underwater vehicles, AUVs, most studies have focused on the de- termination of static coefficients without considering the effects of the vehicle control surface deflection. This paper analyses the hydrodynamic efforts generated on an AUV considering the combined effects of the control surface deflection and the angle of attack using CFD software based on the Reynolds-averaged Navier–Stokes formulations. The CFD simulations are also independently conducted for the AUV bare hull and control surface to better identify their individual and interference efforts and to validate the simulations by comparing the experimental results obtained in a towing tank. Several simulations of the bare hull case were conducted to select the k –ω SST turbulent model with the viscosity approach that best predicts its hydrodynamic efforts. Mesh sensitivity analyses were conducted for all simulations. For the flow around the control surfaces, the CFD results were analysed according to two different methodologies, standard and nonlinear. The nonlinear regression methodology provides better results than the standard methodology does for predicting the stall at the control surface. The flow simulations have shown that the occurrence of the control surface stall depends on a linear relationship between the angle of attack and the control surface deflection. This type of information can be used in designing the vehicle’s autopilot system.
Resumo:
In this work the surface layer formation in polymer melts and in polymer solutions have been investigated with the atomic force microscope (AFM). In polymer melts, the formation of an immobile surface layer results in a steric repulsion, which can be measured by the AFM. From former work it is know, that polydimethyl siloxane (PDMS) forms a stable surface layer for molecular weights above 12 kDa. In the present thesis, polyisoprene (PI) was investigated apart from PDMS, by a)measuring the steric surface interactions and b)measuring the surface slip in hydrodynamic experiments. If a polymer flows over a surface, the flow velocity at the surface is larger then zero. If case of a surface layer formation the flow plane changes to the top of the adsorbed layer and the surface slip is reduced to zero. By measuring the surface slip in hydrodynamic experiments, it is therefore possible to determine the presence of a stable surface layer. The results show no stable repulsion for PI and only a small decrease of the surface slip. This indicates that PI does not form a stable surface layer, but is only adsorbed weakly to the surface. Furthermore for 8 kDa PDMS the timescale of the formation of a surface layer was investigated by changing themaximal force the tip applied to the surface. With a repulsive force present, applying a higher force than 15 nN resulted in a destruction of the surface layer, indicated by attractive forces. Reducing the applied force below 15 nN then resulted in an increase of the repulsion to the former state during one minute, thus indicating that a surface layer can be formed within one minute even under the influence of continuous measurements. As a next step, mixtures of two PDMS homopolymers with different chain lengths have been investigated. The aim was to verify theoretical predictions that shorter chains should predominate at the surface due to their smaller loss in conformational entropy. The measurements where done in dependence of the volume fractions of short and long chain PMDS. The results confirmed the short chain dominance for all mixtures with less then 90 vol.% long chain PDMS. Surface layer formation in solution was investigated for superplasticizers which are industrially used as an additive to cement. They change the surface interaction between the cement grains from attractive to repulsive and the freshlymixed cement paste therefore becomes liquid. The aimin this part of the thesis was, to investigate cement particle interactions in a close to real environment. Therefore calcium silicate hydrate phases have been precipitated onto an AFM tip and onto a calcite crystal and the interaction between these surfaces have beenmeasured with and without addition of superplasticizers. The measurements confirmed the change from attraction to repulsion upon addition of superplasticizers. The repulsive steric interaction increased with the length of the sidechain of the superplasticizer, and the dependence of the range of the steric interactions on the sidechain length indicated that the sidechains are in a coiled conformation.
Resumo:
Probably most of the area included in this report has been examined to some extent by oil geologists, and most, if not all, of the important domes have been discovered and surveyed thoroughly. In parts of the area, the bedrock is covered by glacial drift or alluvium material, but it is reasonable to believe that no new domal structure will be found. This means that surface examination alone will be insufficient in locating new oil fields, so future prospecting will be dependent, to a great extent, on studies of sub-surface stratigraphy.
Resumo:
The physical processes controlling the mixed layer salinity (MLS) seasonal budget in the tropical Atlantic Ocean are investigated using a regional configuration of an ocean general circulation model. The analysis reveals that the MLS cycle is generally weak in comparison of individual physical processes entering in the budget because of strong compensation. In evaporative regions, around the surface salinity maxima, the ocean acts to freshen the mixed layer against the action of evaporation. Poleward of the southern SSS maxima, the freshening is ensured by geostrophic advection, the vertical salinity diffusion and, during winter, a dominant contribution of the convective entrainment. On the equatorward flanks of the SSS maxima, Ekman transport mainly contributes to supply freshwater from ITCZ regions while vertical salinity diffusion adds on the effect of evaporation. All these terms are phase locked through the effect of the wind. Under the seasonal march of the ITCZ and in coastal areas affected by river (7°S:15°N), the upper ocean freshening by precipitations and/or runoff is attenuated by vertical salinity diffusion. In the eastern equatorial regions, seasonal cycle of wind forced surface currents advect freshwaters, which are mixed with subsurface saline water because of the strong vertical turbulent diffusion. In all these regions, the vertical diffusion presents an important contribution to the MLS budget by providing, in general, an upwelling flux of salinity. It is generally due to vertical salinity gradient and mixing due to winds. Furthermore, in the equator where the vertical shear, associated to surface horizontal currents, is developed, the diffusion depends also on the sheared flow stability.
Resumo:
In this paper we solve a problem raised by Gutiérrez and Montanari about comparison principles for H−convex functions on subdomains of Heisenberg groups. Our approach is based on the notion of the sub-Riemannian horizontal normal mapping and uses degree theory for set-valued maps. The statement of the comparison principle combined with a Harnack inequality is applied to prove the Aleksandrov-type maximum principle, describing the correct boundary behavior of continuous H−convex functions vanishing at the boundary of horizontally bounded subdomains of Heisenberg groups. This result answers a question by Garofalo and Tournier. The sharpness of our results are illustrated by examples.
Resumo:
Thermal and mechanical material properties determine comet evolution and even solar system formation because comets are considered remnant volatile-rich planetesimals. Using data from the Multipurpose Sensors for Surface and Sub-Surface Science (MUPUS) instrument package gathered at the Philae landing site Abydos on comet 67P/Churyumov-Gerasimenko, we found the diurnal temperature to vary between 90 and 130 K. The surface emissivity was 0.97, and the local thermal inertia was 85 +/- 35 J m(-2) K(-1)s(-1/2). The MUPUS thermal probe did not fully penetrate the near-surface layers, suggesting a local resistance of the ground to penetration of >4 megapascals, equivalent to >2 megapascal uniaxial compressive strength. A sintered near-surface microporous dust-ice layer with a porosity of 30 to 65% is consistent with the data.