900 resultados para stretching sheet
Resumo:
As disparities in wealth levels between and within countries become greater many poor people migrate in search of better earning opportunities. Some of this migration is legal but, in many cases, the difficulties involved in securing the necessary documentation mean that would-be migrants resort to illegal methods. This, in turn, makes them vulnerable to human trafficking, a phenomenon that has received growing attention from NGOs, governments and the media in recent years. Despite the attention being given to human trafficking, however, there remains a certain amount of confusion over what exactly it entails though it is generally understood to refer to the transportation and subsequent exploitation of vulnerable people through means of force or deception. The increased attention that has been given to the issue of human trafficking over the last decade has resulted in new discourses emerging which attempt to explain what human trafficking entails, what the root causes of the phenomenon are and how best to tackle the problem. While a certain degree of conceptual clarity has been attained since human trafficking rose to prominence in the 1990s, it could be argued that human trafficking remains a poorly defined concept and that there is frequently confusion concerning the difference between it and related concepts such as people smuggling, migration and prostitution. The thesis examines the ways in which human trafficking has been conceptualised or framed in a specific national context- that of Lao PDR. Attention is given to the task of locating the major frames within which the issue has been situated, as well as considering the diagnoses and prognoses that the various approaches to trafficking suggest. The research considers which particular strands of trafficking discourse have become dominant in Lao PDR and the effect this has had on the kinds of trafficking interventions that have been undertaken in the country. The research is mainly qualitative and consists of an analysis of key texts found in the Lao trafficking discourse.
Resumo:
In a recent paper Nakagawa and Nishida [1989] have suggested that wavy motions of the neutral sheet can be generated by the Kelvin‐Helmholtz instability if the dawn‐dusk flow of only several tens of km/s is present. However, their mathematical analysis is based on the choice of particular magnetic field directions in the three regions consisting of north, south lobes and the neutral sheet. In an earlier paper Uberoi [1986] discussed the Kelvin‐Helmholtz instability of a similar structured plasma layer without any assumptions either on velocity field directions or on the magnetic field directions, thus pointing out the angle effect due to variation in magnetic field directions on the instability criterion. The relevance of these results to the problem of wavy motions of the neutral sheet are pointed out. In particular it is found that when the y‐component of the magnetic field in each lobe is taken into consideration the Kelvin‐Helmholtz instability can be exicted only when the dawn‐dusk flow is of several hundreds of km/s a order of ten higher than that arrived in the analysis by Nakagawa and Nishida [1989].
Resumo:
Reaction of formamide with Ni(NO3)(2)center dot 6H(2)O under hydrothermal condition in a mixture of MeOH/H2O forms a two-dimensional formate bridged sheet Ni(HCOO)(2)(MeOH)(2) (1). X-ray structure analysis reveals the conversion of formamide to formate which acts as a bridging ligand in complex 1 where the axial sites of Ni(II) are occupied by methanol used as a solvent. An analogous reaction in presence of 4,4'-bipyridyl (4,4'-bipy) yielded a three-dimensional structure Ni(HCOO)(2)(4,4'-bpy) (2). DC magnetic measurements as a function of temperature and field established the presence of spontaneous magnetization with T-c (Curie temperature) = 17 and 20.8 K in 1 and 2, respectively, which can be attributed due to spin-canting. DFT calculations were performed to corroborate the magnetic results of 1 and 2. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Heart failure is a common, severe, and progressive condition associated with high mortality and morbidity. Because of population-aging in the coming decades, heart failure is estimated to reach epidemic proportions. Current medical and surgical treatments have reduced mortality, but the prognosis for patients has remained poor. Transplantation of skeletal myoblasts has raised hope of regenerating the failing heart and compensating for lost cardiac contractile tissue. In the present work, we studied epicardial transplantation of tissue-engineered myoblast sheets for treatment of heart failure. We employed a rat model of myocardial infarction-induced acute and chronic heart failure by left anterior descending coronary artery ligation. We then transplanted myoblast sheets genetically modified to resist cell death after transplantation by expressing antiapoptotic gene bcl2. In addition, we evaluated the regenerative capacity of myoblast sheets expressing the cardioprotective cytokine hepatocyte growth factor in a rat chronic heart failure model. Furthermore, we utilized in vitro cardiomyocyte and endothelial cell culture models as well as microarray gene expression analysis to elucidate molecular mechanisms mediating the therapeutic effects of myoblast sheet transplantation. Our results demonstrate that Bcl2-expression prolonged myoblast sheet survival in rat hearts after transplantation and induced secretion of cardioprotective, proangiogenic cytokines. After acute myocardial infarction, these sheets attenuated left ventricular dysfunction and myocardial damage, and they induced therapeutic angiogenesis. In the chronic heart failure model, inhibition of graft apoptosis by Bcl-2 improved cardiac function, supported survival of cardiomyocytes in the infarcted area, and induced angiogenesis in a vascular endothelial growth factor receptor 1- and 2-dependent mechanism. Hepatocyte growth factor-secreting myoblast sheets further enhanced the angiogenic efficacy of myoblast sheet therapy. Moreover, myoblast-secreted paracrine factors protected cardiomyocytes against oxidative stress in an epidermal growth factor receptor- and c-Met dependent manner. This protection was associated with induction of antioxidative genes and activation of the unfolded protein response. Our results provide evidence that inhibiting myoblast sheet apoptosis can enhance the sheets efficacy for treating heart failure after acute and chronic myocardial infarction. Furthermore, we show that myoblast sheets can serve as vehicles for delivery of growth factors, and induce therapeutic angiogenesis in the chronically ischemic heart. Finally, myoblasts induce, in a paracine manner, a cardiomyocyte-protective response against oxidative stress. Our study elucidates novel mechanisms of myoblast transplantation therapy, and suggests effective means to improve this therapy for the benefit of the heart failure patient.
Resumo:
An important problem regarding pin joints in a thermal environment is addressed. The motivation emerges from structural safety requirements in nuclear and aerospace engineering. A two-dimensional model of a smooth, rigid misfit pin in a large isotropic sheet is considered as an abstraction. The sheet is subjected to a biaxial stress system and far-field unidirectional heat flow. The thermoelastic analysis is complex due to non-linear load-dependent contact and separation conditions at the pin-hole interface and the absence of existence and uniqueness theorems for the class of frictionless thermoelastic contact problems. Identification of relevant parameters and appropriate synthesis of thermal and mechanical variables enables the thermomechanical generalization of pin-joint behaviour. This paper then proceeds to explore the possibility of multiple solutions in such problems, especially interface contact configuration.
Resumo:
In this numerical study, the unsteady laminar incompressible boundary-layer flow over a continuously stretching surface has been investigated when the velocity of the stretching surface varies arbitrarily with time. Both the nodal and the saddle point regions of flow have been considered for the analysis. Also, constant wall temperature/concentration and constant heat/mass flux at the stretching surface have been taken into account. The quasilinearisation method with an implicit finite-difference scheme is used in the nodal point region (0 less-than-or-equal-to c less-than-or-equal-to 1) where c denotes the stretching ratio. This method fails in the saddle point region (-1 less-than-or-equal-to c less-than-or-equal-to 0) due to the occurrence of reverse flow in the y-component of velocity. In order to overcome this difficulty, the method of parametric differentiation with an implicit finite-difference scheme is used, where the values at c = 0 are taken as starting values. Results have been obtained for the stretching velocities which are accelerating and decelerating with time. Results show that the skin friction, the heat transfer and the mass transfer parameters respond significantly to the time dependent stretching velocities. Suction (A > 0) is found to be an important parameter in obtaining convergent solution in the case of the saddle point region of flow. The Prandtl number and the Schmidt number strongly affect the heat and mass transfer of the diffusing species, respectively.
Resumo:
Static disorder has recently been implicated in the non-exponential kinetics of the unfolding of single molecules of poly-ubiquitin under a constant force Kuo, Garcia-Manyes, Li, Barel, Lu, Berne, Urbakh, Klafter, and Fernandez, Proc. Natl. Acad. Sci. U. S. A. 107, 11336 (2010)]. In the present paper, it is suggested that dynamic disorder may provide a plausible, alternative description of the experimental observations. This suggestion is made on the basis of a model in which the barrier to chain unfolding is assumed to be modulated by a control parameter r that evolves in a parabolic potential under the action of fractional Gaussian noise according to a generalized Langevin equation. The treatment of dynamic disorder within this model is pursued using Zwanzig's indirect approach to noise averaging Acc. Chem. Res. 23, 148 (1990)]. In conjunction with a self-consistent closure scheme developed by Wilemski and Fixman J. Chem. Phys. 58, 4009 (1973); ibid. 60, 866 (1974)], this approach eventually leads to an expression for the chain unfolding probability that can be made to fit the corresponding experimental data very closely. (C) 2011 American Institute of Physics.
Resumo:
Discrete vortex simulations of the mixing layer carried out in the past have usually involved large induced velocity fluctuations, and thus demanded rather long time-averaging to obtain satisfactory values of Reynolds stresses and third-order moments. This difficulty has been traced here, in part, to the use of discrete vortices to model what in actuality are continuous vortex sheets. We propose here a novel two-dimensional vortex sheet technique for computing mixing layer flow in the limit of infinite Reynolds number. The method divides the vortex sheet into constant-strength linear elements, whose motions are computed using the Biot-Savart law. The downstream far-field is modelled by a steady vorticity distribution derived by application of conical similarity from the solution obtained in a finite computational domain. The boundary condition on the splitter plate is satisfied rigorously using a doublet sheet. The computed large-scale roll-up of the vortex sheet is qualitatively similar to experimentally obtained shadow-graphs of the plane turbulent mixing layer. The mean streamwise velocity profile and the growth rate agree well with experimental data. The presently computed Reynolds stresses and third-order moments are comparable with experimental and previous vortex-dynamical results, without using any external parameter (such as the vortex core-size) of the kind often used in the latter. The computed autocorrelations are qualitatively similar to experimental results along the top and bottom edges of the mixing layer, and show a well-defined periodicity along the centreline. The accuracy of the present computation is independently established by demonstrating negligibly small changes in the five invariants (including the Hamiltonian) in vortex dynamics.
Resumo:
Integrity enhancement of damaged or design deficient structures through repairs is attracting considerable engineering attention. Bonded composite patch repairs to cracked metallic sheets offer various advantages over riveted doubler type, particularly for airframe applications. This paper first reviews the R&D activity in the area of structural repairs. It then approaches the problem of a composite patch repair to a cracked aluminium sheet with different finite element modelling strategies and compares their outcome. The efficient finite element modelling approach thus established is used to study the effect of patch material, patch size, patch symmetry and adhesive thickness on repair performance as the crack grows in the repair configuration. (C) 1999 Elsevier Science Ltd. All rights reserved.