994 resultados para stress hormone


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In rats, neonatal treatment with monosodium L-glutamate (MSG) induces several metabolic and neuroendocrine abnormalities, which result in hyperadiposity. No data exist, however, regarding neuroendocrine, immune and metabolic responses to acute endotoxemia in the MSG-damaged rat. We studied the consequences of MSG treatment during the acute phase response of inflammatory stress. Neonatal male rats were treated with MSG or vehicle (controls, CTR) and studied at age 90 days. Pituitary, adrenal, adipo-insular axis, immune, metabolic and gonadal functions were explored before and up to 5 h after single sub-lethal i.p. injection of bacterial lipopolysaccharide (LPS; 150 microg/kg). Our results showed that, during the acute phase response of inflammatory stress in MSG rats: (1) the corticotrope-adrenal, leptin, insulin and triglyceride responses were higher than in CTR rats, (2) pro-inflammatory (TNFalpha) cytokine response was impaired and anti-inflammatory (IL-10) cytokine response was normal, and (3) changes in peripheral estradiol and testosterone levels after LPS varied as in CTR rats. These data indicate that metabolic and neroendocrine-immune functions are altered in MSG-damaged rats. Our study also suggests that the enhanced corticotrope-corticoadrenal activity in MSG animals could be responsible, at least in part, for the immune and metabolic derangements characterizing hypothalamic obesity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L'axe hypothalamo-hypophyso-surrénalien (HPA) permet de maintenir l'homéostasie de l'organisme face à divers stress. Qu'ils soient de nature psychologique, physique ou inflammatoire/infectieux, les stress provoquent la synthèse et la libération de CRH par l'hypothalamus. Les cellules corticotropes hypophysaires perçoivent ce signal et en réaction, produisent et sécrètent l'ACTH. Ceci induit la synthèse des glucocorticoïdes (Gc) par le cortex surrénalien; ces stéroïdes mettent le système métabolique en état d’alerte pour la réponse au stress et à l’agression. Les Gc ont le rôle essentiel de contrôler les défenses de l'organisme, en plus d'exercer une rétro-inhibition sur l'axe HPA. L'ACTH est une petite hormone peptidique produite par le clivage d'un précurseur: la pro-opiomélanocortine (POMC). À cause de sa position critique dans la normalisation de l'homéostasie, le contrôle transcriptionnel du gène Pomc a fait l'objet d'études approfondies au cours des dernières décennies. Nous savons maintenant que la région promotrice du gène Pomc permet une expression ciblée dans les cellules POMC hypophysaires. L'étude du locus Pomc par des technologies génomiques m'a permis de découvrir un nouvel élément de régulation qui est conservé à travers l'évolution des mammifères. La caractérisation de cet enhancer a démontré qu'il dirige une expression restreinte à l'hypophyse, et plus particulièrement dans les cellules corticotropes. De façon intéressante, l'activité de cet élément dépend d'un nouveau site de liaison recrutant un homodimère du facteur de transcription Tpit, dont l'expression est également limitée aux cellules POMC de l'hypophyse. La découverte de cet enhancer ajoute une toute nouvelle dimension à la régulation de l'expression de POMC. Les cytokines pro-inflammatoires IL6/LIF et les Gc sont connus pour leur antagonisme sur la réaction inflammatoire et sur le promoteur Pomc via l'action des facteurs de transcription Stat3 et GR respectivement. L'analyse génomique des sites liés ii par ces deux facteurs nous a révélé une interrelation complexe et a permis de définir un code transcriptionnel entre ces voies de signalisation. En plus de leur action par interaction directe avec l’ADN au niveau des séquences régulatrices, ces facteurs interagissent directement entre eux avec des résultats transcriptionnels différents. Ainsi, le recrutement de GR par contact protéine:protéine (tethering) sur Stat3 étant lié à l'ADN provoque un antagonisme transcriptionnel. Inversement, le tethering de Stat3 sur GR supporte une action synergique, tout comme leur co-recrutement à l'ADN sur des sites contigus ou composites. Lors d'une activation soutenue, ce synergisme entre les voies IL6/LIF et Gc induit une réponse innée de défense cellulaire. Ainsi lors d'un stress majeur, ce mécanisme de défense est mis en branle dans toutes les cellules et tissus. En somme, les travaux présentés dans cette thèse définissent les mécanismes transcriptionnels engagés dans le combat de l'organisme contre les stress. Plus particulièrement, ces mécanismes ont été décrits au niveau de la réponse globale des corticotropes et du gène Pomc. Il est essentiel pour l'organisme d'induire adéquatement ces mécanismes afin de faire face aux stress et d'éviter des dérèglements comme les maladies inflammatoires et métaboliques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Ibuprofen and other nonsteroidal anti-inflammatory drugs have been designed to interrupt eicosanoid metabolism in mammals, but little is known of how they affect nontarget organisms. Here we report a systems biology study that simultaneously describes the transcriptomic and phenotypic stress responses of the model crustacean Daphnia magna after exposure to ibuprofen. Results: Our findings reveal intriguing similarities in the mode of action of ibuprofen between vertebrates and invertebrates, and they suggest that ibuprofen has a targeted impact on reproduction at the molecular, organismal, and population level in daphnids. Microarray expression and temporal real-time quantitative PCR profiles of key genes suggest early ibuprofen interruption of crustacean eicosanoid metabolism, which appears to disrupt signal transduction affecting juvenile hormone metabolism and oogenesis. Conclusion: Combining molecular and organismal stress responses provides a guide to possible chronic consequences of environmental stress for population health. This could improve current environmental risk assessment by providing an early indication of the need for higher tier testing. Our study demonstrates the advantages of a systems approach to stress ecology, in which Daphnia will probably play a major role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the effect of human-animal interaction (HAI) and the stress response on the quality of embryo production in superovulated Nelore (Bos indicus) cattle, under tropical conditions. Thirty-two females underwent a superovulation protocol for 5 days. Cortisol concentrations were determined in blood plasma collected on days 0, 4, and 5. Artificial insemination was performed on days 4 and 5, and nonsurgical embryo flushing on day 11. Embryo production and viability were determined. Human stimulation, animal behaviors, accidents, and handling time were recorded to assess HAI. Cattle age was negatively correlated with accidents, frequency of aversive behaviors, and negative stimuli by stockperson during transit through corral compartments to receive superovulation treatments. The factor analysis revealed two distinct groups. The first group was called stressed and had higher cortisol concentration than the nonstressed group, 16.0 +/- 2.1 and 12.5 +/- 1.0 ng/mL, respectively. Comparisons between these groups showed that the frequency of voice emissions by the stockperson and the number of accidents were higher in the stressed group, and also, the mean handling time was longer in the stressed group than for the nonstressed. As a result, viability rate of the embryos was 19% lower in the stressed group (P < 0.05). This indicates that intensive negative HAI is likely related to stress, which affects embryo production in a superovulation program.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four rumen-fistulated Holstein heifers (134 +/- 1 kg initial BW) were used in a 4 x 4 Latin square design to determine the effects of delaying daily feed delivery time on intake, ruminal fermentation, behavior, and stress response. Each 3-wk experimental period was preceded by 1 wk in which all animals were fed at 0800 h. Feed bunks were cleaned at 0745 h and feed offered at 0800 h (T0, no delay), 0900 (T1), 1000 (T2), and 1100 (T3) from d1 to 21 with measurements taken during wk 1 and 3. Heifers were able to see each other at all times. Concentrate and barley straw were offered in separate compartments of the feed bunks, once daily and for ad libitum intake. Ruminal pH and saliva cortisol concentrations were measured at 0, 4, 8, and 12 h postfeeding on d 3 and 17 of each experimental period. Fecal glucocorticoid metabolites were measured on d 17. Increasing length of delay in daily feed delivery time resulted in a quadratic response in concentrate DMI (low in T1 and T2; P = 0.002), whereas straw DMI was greatest in T1 and T3 (cubic P = 0.03). Treatments affected the distribution of DMI within the day with a linear decrease observed between 0800 and 1200 h but a linear increase during nighttimes (2000 to 0800 h), whereas T1 and T2 had reduced DMI between 1200 and 1600 h (quadratic P = 0.04). Water consumption (L/d) was not affected but decreased linearly when expressed as liters per kilogram of DMI (P = 0.01). Meal length was greatest and eating rate slowest in T1 and T2 (quadratic P <= 0.001). Size of the first meal after feed delivery was reduced in T1 on d 1 (cubic P = 0.05) and decreased linearly on d 2 (P = 0.01) after change. Concentrate eating and drinking time (shortest in T1) and straw eating time (longest in T1) followed a cubic trend (P = 0.02). Time spent lying down was shortest and ruminating in standing position longest in T1 and T2. Delay of feeding time resulted in greater daily maximum salivary cortisol concentration (quadratic P = 0.04), which was greatest at 0 h in T1 and at 12 h after feeding in T2 (P < 0.05). Daily mean fecal glucocorticoid metabolites were greatest in T1 and T3 (cubic P = 0.04). Ruminal pH showed a treatment effect at wk 1 because of increased values in T1 and T3 (cubic P = 0.01). Delaying feed delivery time was not detrimental for rumen function because a stress response was triggered, which led to reduced concentrate intake, eating rate, and size of first meal, and increased straw intake. Increased salivary cortisol suggests that animal welfare is compromised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temporal organization of mammals presents a daily adjustment to the environmental light/dark cycle. The environmental light detected by the retina adjusts the central clock in the suprachiasmatic nuclei, which innervate the pineal gland through a polysynaptic pathway. During the night, this gland produces and releases the nocturnal hormone melatonin, which circulates throughout the whole body and adjusts several bodily functions according to the existence and duration of darkness. We have previously shown that during the time frame of an inflammatory response, pro-inflammatory cytokines, such as tumor necrosis factor-a, inhibit while anti-inflammatory mediators, such as glucocorticoids, enhance the synthesis of melatonin, interfering in the daily adjustment of the light/dark cycle. Therefore, injury disconnects the organism from environmental cycling, while recovery restores the light/dark information to the whole organism. Here, we extend these observations by evaluating the effect of a mild restraint stress, which did not induce macroscopic gastric lesions. After 2 h of restraint, there was an increase in circulating corticosterone, indicating activation of the hypothalamus-pituitary-adrenal (HPA) axis. In parallel, an increase in melatonin production was observed. Taking into account the data obtained with models of inflammation and stress, we reinforce the hypothesis that the activity of the pineal gland is modulated by the state of the immune system and the HPA axis, implicating the darkness hormone melatonin as a modulator of defense responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prion protein (PrP(C)) interaction with stress inducible protein 1 (STI1) mediates neuronal survival and differentiation. However, the function of PrP(C) in astrocytes has not been approached. In this study, we show that STI1 prevents cell death in wild-type astrocytes in a protein kinase A-dependent manner, whereas PrP(C)-null astrocytes were not affected by STI1 treatment. At embryonic day 17, cultured astrocytes and brain extracts derived from PrP(C)-null mice showed a reduced expression of glial fibrillary acidic protein (GFAP) and increased vimentin and nestin expression when compared with wild-type, suggesting a slower rate of astrocyte maturation in PrP(C)-null animals. Furthermore, PrP(C)-null astrocytes treated with STI1 did not differentiate from a flat to a process-bearing morphology, as did wild-type astrocytes. Remarkably, STI1 inhibited proliferation of both wild-type and PrP(C)-null astrocytes in a protein kinase C-dependent manner. Taken together, our data show that PrP(C) and STI1 are essential to astrocyte development and act through distinct signaling pathways.(C) 2009 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various stressors suppress pulsatile secretion of luteinizing hormone (LH) in ewes and cortisol has been shown to be a mediator of this effect under various conditions. In contrast, little is known about the impact of stress and cortisol on sexual behavior in the ewe. Therefore, we tested the hypothesis that both psychosocial stress and stress-like levels of cortisol will reduce the level of attractivity, proceptivity and receptivity in addition to suppressing LH secretion in the ewe. In Experiment 1, a layered stress paradigm of psychosocial stress was used, consisting of isolation for 4 h with the addition of restraint, blindfold and noise of a barking dog (predator stress) at hourly intervals. This stress paradigm reduced LH pulse amplitude in ovariectomized ewes. In Experiment 2, ovariectomized ewes were artificially induced into estrus with progesterone and estradiol benzoate treatment and the layered stress paradigm was applied. LH was measured and sexual behavior was assessed using T-mazes and mating tests. Stress reduced pulsatile LH secretion, and also reduced attractivity and proceptivity of ewes but had no effect on receptivity. In Experiment 3, ewes artificially induced into estrus were infused with cortisol for 30 h. Cortisol elevated circulating plasma concentrations of cortisol, delayed the onset of estrus and resulted in increased circling behavior of ewes (i.e. moderate avoidance) during estrus and increased investigation and courtship from rams. There was no effect of cortisol on attractivity, proceptivity or receptivity during estrus. We conclude that psychosocial stress inhibits LH secretion, the ability of ewes to attract rams (attractivity) and the motivation of ewes to seek rams and initiate mating (proceptivity), but cortisol is unlikely to be the principal mediator of these effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is evidence that levels of adipose tissue can influence responses of the hypothalamopituitary-adrenal (HPA) axis to stress in humans and rats but this has not been explored in sheep. Also, little is known about the sympathoadrenal responses to stress in individuals with relatively different levels of adipose tissue. We tested the hypothesis that the stress-induced activation of the HPA axis and sympathoadrenal system is lower in ovariectomized ewes with low levels of body fat (lean) than ovariectomized ewes with high levels of body fat (fat). Ewes underwent dietary manipulation for 3 months to yield a group of lean ewes (n = 7) with a mean (±SEM) live weight of 39.1 ± 0.9 kg and body fat of 8.9 ± 0.6% and fat ewes (n = 7) with a mean (±SEM) live weight of 69.0 ± 1.8 kg and body fat of 31.7 ± 3.4%. Fat ewes also had higher circulating concentrations of leptin than lean ewes. Blood samples were collected every 15 min over 8 h when no stress was imposed (control day) and on a separate day when 4 h of isolation/restraint was imposed after 4 h of pretreatment sampling (stress day). Plasma concentrations of adrenocorticotropic hormone (ACTH), cortisol, epinephrine and norepinephrine did not change significantly over the control day and did not differ between lean and fat ewes. Stress did not affect plasma leptin levels. All stress hormones increased significantly during isolation/restraint stress. The ACTH, cortisol and epinephrine responses were greater in fat ewes than lean ewes but norepinephrine responses were similar. Our results suggest that relative levels of adipose tissue influence the stress-induced activity of the hypothalamopituitary-adrenal axis and some aspects of the sympathoadrenal system with fat animals having higher responses than lean animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stress compromises reproductive function and the major physiological system activated during stress is the hypothalamo-pituitary-adrenal axis. Corticotrophin-releasing hormone and arginine vasopressin (AVP), which are produced in neurones of the paraventricular nucleus (PVN), drive the hypothalamo-pituitary-adrenal axis and are also implicated in the suppression of the reproductive axis. We used retrograde tracing and Fos labelling to map the projections from the PVN to the preoptic area (POA) where most gonadotrophin releasing hormone (GnRH) neurones are found. Fluorogold (FG) injections were made into the POA of gonadectomised male and female sheep (n = 5/sex), the animals were stressed and the brains recovered for histochemistry. All animals responded to stress with an increase in the number of Fos-labelled nuclei in the PVN. Few retrogradely labelled cells of the PVN were activated by stress. Dual labelling showed that very few FG-labelled cells also stained for corticotrophin-releasing hormone, none for AVP or enkephalin. Dual labelling for FG and Fos in the bed nucleus of the stria terminalis (BNST) and the arcuate nucleus showed that no FG-labelled cells in the BNST and only few in the ARC were activated by stress. No sex differences were observed in the activation of FG-labelled cells in any of the nuclei examined. We conclude that, although cells of the PVN, BNST and/or arcuate nucleus may affect reproduction via the GnRH cells of the POA, this is unlikely to involve direct input to the POA. If cells of these regions are involved in GnRH suppression during stress, this may occur via interneuronal pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two experiments were conducted to test the hypothesis that cortisol interferes with the positive feedback action of estradiol that induces the luteinizing hormone (LH) surge. Ovariectomized sheep were treated sequentially with progesterone and estradiol to create artificial estrous cycles. Cortisol or vehicle (saline) was infused from 2 h before the estradiol stimulus through the time of the anticipated LH surge in the artificial follicular phase of two successive cycles. The plasma cortisol increment produced by infusion was ∼1.5 times greater than maximal concentrations seen during infusion of endotoxin, which is a model of immune/inflammatory stress. In experiment 1, half of the ewes received vehicle in the first cycle and cortisol in the second; the others were treated in reverse order. All ewes responded with an LH surge. Cortisol delayed the LH surge and reduced its amplitude, but both effects were observed only in the second cycle. Experiment 2 was modified to provide better control for a cycle effect. Four treatment sequences were tested (cycle 1-cycle 2): vehicle-vehicle, cortisol-cortisol, vehicle-cortisol, cortisol-vehicle. Again, cortisol delayed but did not block the LH surge, and this delay occurred in both cycles. Thus, an elevation in plasma cortisol can interfere with the positive feedback action of estradiol by delaying and attenuating the LH surge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mammary explants can be hormonally stimulated to mimic the biochemical changes that occur during lactogenesis. Previous studies using mammary explants concluded that the addition of exogenous macromolecules were required for mammary epithelial cells to remain viable in culture. The present study examines the survival of mammary explants from the dairy cow using milk protein gene expression as a functional marker of lactation and cell viability. Mammary explants cultured from late pregnant cows mimicked lactogenesis and showed significantly elevated milk protein gene expression after 3 days of culture with lactogenic hormones. The subsequent removal of exogenous hormones from the media for 10 days resulted in the down-regulation of milk protein genes. During this time, the mammary explants remained hormone responsive, the alveolar architecture was maintained and the expression of milk protein genes was re-induced after a second challenge with lactogenic hormones. We report that a population of bovine mammary epithelial cells have an intrinsic capacity to remain viable and hormone responsive for extended periods in chemically defined media without any exogenous macromolecules. In addition, we found mammary explant viability was dependent on de novo protein and RNA synthesis. Global functional microarray analysis showed that differential expression of genes involved in energy production, immune responses, oxidative stress and apoptosis signalling might contribute to cell survival. As the decline in milk production in dairy cattle after peak lactation results in considerable economic loss, the identification of novel survival genes may be used as genetic markers for breeding programmes to improve lactational persistency in dairy cows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To identify the mechanism underlying the exaggerated hyperglycemia during exercise in the heat, six trained men were studied during 40 min of cycling exercise at a workload requiring 65% peak pulmonary oxygen uptake (V˙o 2 peak) on two occasions at least 1 wk apart. On one occasion, the ambient temperature was 20°C [control (Con)], whereas on the other, it was 40°C [high temperature (HT)]. Rates of glucose appearance and disappearance were measured by using a primed continuous infusion of [6,6-2H]glucose. No differences in oxygen uptake during exercise were observed between trials. After 40 min of exercise, heart rate, rectal temperature, respiratory exchange ratio, and plasma lactate were all higher in HT compared with Con (P < 0.05). Plasma glucose levels were similar at rest (Con, 4.54 ± 0.19 mmol/l; HT, 4.81 ± 0.19 mmol/l) but increased to a greater extent during exercise in HT (6.96 ± 0.16) compared with Con (5.45 ± 0.18;P < 0.05). This was the result of a higher glucose rate of appearance in HT during the last 30 min of exercise. In contrast, the glucose rate of disappearance and metabolic clearance rate were not different at any time point during exercise. Plasma catecholamines were higher after 10 and 40 min of exercise in HT compared with Con (P < 0.05), whereas plasma glucagon, cortisol, and growth hormone were higher in HT after 40 min. These results indicate that the hyperglycemia observed during exercise in the heat is caused by an increase in liver glucose output without any change in whole body glucose utilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We tested the hypothesis that sustained and repeated acute elevation of cortisol would impair the LH surge, estrus, and ovulation in gilts. Cortisol was injected intramuscularly, to achieve a sustained elevation of plasma concentrations of cortisol, or intravenously, to achieve an acute elevation of plasma concentrations of cortisol. Control gilts received i.m. injections of oil and i.v. injections of saline. These treatments were administered to gilts (n = 6 per treatment) at 12-h intervals from Days 7 to 11 of the estrous cycle until after estrus ceased or until Day 27 or 28 of the estrous cycle, whichever came first. The repeated acute elevation of cortisol had no effect on the LH surge, estrus, or ovulation. In contrast, when the elevation of cortisol was sustained, the LH surge, estrus, and ovulation were inhibited. We conclude that cortisol is capable of direct actions to impair reproductive processes in female pigs but that plasma concentrations of cortisol need to be elevated for a substantial period for this to occur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The means by which stress influences reproduction is not clearly understood, but may involve a number of endocrine, paracrine and neural systems. Stress impacts on the reproductive axis at the hypothalamus (to affect GnRH secretion) and the pituitary gland (to affect gonadotrophin secretion), with direct effects on the gonads being of less importance. Different stressors have different effects and there are differences in response to short- and long-term stress. Many short-term stresses fail to affect reproduction and there are reports of stimulatory effects of some 'stressors'. There are species differences in the way that specific stressors affect reproduction. Sex differences in the effects of a particular stressor have been delineated and these may relate to effects of stress at different levels of the hypothalamo-pituitary axis. The significance of stress-induced secretion of cortisol varies with species. In some instances, there appears to be little impact of short-term increases in cortisol concentrations and protracted increases in plasma concentration seem to be required before any deleterious effect on reproduction is apparent. Issues of sex, sex steroid status, type of stressor and duration of stress need to be considered to improve understanding of this issue.