984 resultados para stochastic growth
Resumo:
Experimental and theoretical studies have shown the importance of stochastic processes in genetic regulatory networks and cellular processes. Cellular networks and genetic circuits often involve small numbers of key proteins such as transcriptional factors and signaling proteins. In recent years stochastic models have been used successfully for studying noise in biological pathways, and stochastic modelling of biological systems has become a very important research field in computational biology. One of the challenge problems in this field is the reduction of the huge computing time in stochastic simulations. Based on the system of the mitogen-activated protein kinase cascade that is activated by epidermal growth factor, this work give a parallel implementation by using OpenMP and parallelism across the simulation. Special attention is paid to the independence of the generated random numbers in parallel computing, that is a key criterion for the success of stochastic simulations. Numerical results indicate that parallel computers can be used as an efficient tool for simulating the dynamics of large-scale genetic regulatory networks and cellular processes
Resumo:
The water and sewerage industry of England and Wales was privatized in 1989 and subjected to a new regime of environmental, water quality and RPI+K price cap regulation. This paper estimates a quality-adjusted input distance function, with stochastic frontier techniques in order to estimate productivity growth rates for the period 1985-2000. Productivity is decomposed so as to account for the impact of technical change, efficiency change, and scale change. Compared with earlier studies by Saal and Parker [(2000) Managerial Decision Econ 21(6):253-268, (2001) J Regul Econ 20(1): 61-90], these estimates allow a more careful consideration of how and whether privatization and the new regulatory regime affected productivity growth in the industry. Strikingly, they suggest that while technical change improved after privatization, productivity growth did not improve, and this was attributable to efficiency losses as firms appear to have struggled to keep up with technical advances after privatization. Moreover, the results also suggest that the excessive scale of the WaSCs contributed negatively to productivity growth. © 2007 Springer Science+Business Media, LLC.
Resumo:
A popular explanation for China's rapid economic growth in recent years has been the dramatic increase in the number of private domestic and foreign-owned firms and a decline in the state-owned sector. However, recent evidence suggest that China's state-owned enterprise (SOEs) are in fact stronger than ever. In this paper we examine over 78,000 manufacturing firms between 2002 and 2006 to investigate the relationship between ownership structure and the degree of firm-level exposure to export markets and firm-level productivity. Using a conditional stochastic dominance approach we reveal that although our results largely adhere to prior expectations, the performance of state-owned enterprises differs markedly between those that export and those that supply the domestic market only. It appears that China's internationally focused SOEs have become formidable global competitors.
Resumo:
This study presents some quantitative evidence from a number of simulation experiments on the accuracy of the productivitygrowth estimates derived from growthaccounting (GA) and frontier-based methods (namely data envelopment analysis-, corrected ordinary least squares-, and stochastic frontier analysis-based malmquist indices) under various conditions. These include the presence of technical inefficiency, measurement error, misspecification of the production function (for the GA and parametric approaches) and increased input and price volatility from one period to the next. The study finds that the frontier-based methods usually outperform GA, but the overall performance varies by experiment. Parametric approaches generally perform best when there is no functional form misspecification, but their accuracy greatly diminishes otherwise. The results also show that the deterministic approaches perform adequately even under conditions of (modest) measurement error and when measurement error becomes larger, the accuracy of all approaches (including stochastic approaches) deteriorates rapidly, to the point that their estimates could be considered unreliable for policy purposes.
Resumo:
Formal grammars can used for describing complex repeatable structures such as DNA sequences. In this paper, we describe the structural composition of DNA sequences using a context-free stochastic L-grammar. L-grammars are a special class of parallel grammars that can model the growth of living organisms, e.g. plant development, and model the morphology of a variety of organisms. We believe that parallel grammars also can be used for modeling genetic mechanisms and sequences such as promoters. Promoters are short regulatory DNA sequences located upstream of a gene. Detection of promoters in DNA sequences is important for successful gene prediction. Promoters can be recognized by certain patterns that are conserved within a species, but there are many exceptions which makes the promoter recognition a complex problem. We replace the problem of promoter recognition by induction of context-free stochastic L-grammar rules, which are later used for the structural analysis of promoter sequences. L-grammar rules are derived automatically from the drosophila and vertebrate promoter datasets using a genetic programming technique and their fitness is evaluated using a Support Vector Machine (SVM) classifier. The artificial promoter sequences generated using the derived L- grammar rules are analyzed and compared with natural promoter sequences.
Resumo:
A popular explanation for China's rapid economic growth in recent years has been the dramatic increase in the number of private domestic- and foreign-owned firms and a decline in the state-owned sector. However, recent evidence suggests that China's state-owned enterprises (SOEs) are in fact stronger than ever. In this paper, we examine over 78,000 manufacturing firms between 2002 and 2006 to investigate the relationship between ownership structure and the degree of firm-level exposure to export markets and firm-level productivity. Using a conditional stochastic dominance approach, we reveal that although our results largely adhere to prior expectations, the performance of SOEs differs markedly between those that export and those that supply the domestic market only. It appears that China's internationally focused SOEs have become formidable global competitors. © 2013 John Wiley & Sons Ltd.
Resumo:
Stochastic anti-resonance, that is resonant enhancement of randomness caused by polarization mode beatings, is analyzed both numerically and analytically on an example of fibre Raman amplifier with randomly varying birefringence. As a result of such anti-resonance, the polarization mode dispersion growth causes an escape of the signal state of polarization from a metastable state corresponding to the pulling of the signal to the pump state of polarization.This phenomenon reveals itself in abrupt growth of gain fluctuations as well as in dropping of Hurst parameter and Kramers length characterizing long memory in a system and noise induced escape from the polarization pulling state. The results based on analytical multiscale averaging technique agree perfectly with the numerical data obtained by direct numerical simulations of underlying stochastic differential equations. This challenging outcome would allow replacing the cumbersome numerical simulations for real-world extra-long high-speed communication systems.
Resumo:
A landfill represents a complex and dynamically evolving structure that can be stochastically perturbed by exogenous factors. Both thermodynamic (equilibrium) and time varying (non-steady state) properties of a landfill are affected by spatially heterogenous and nonlinear subprocesses that combine with constraining initial and boundary conditions arising from the associated surroundings. While multiple approaches have been made to model landfill statistics by incorporating spatially dependent parameters on the one hand (data based approach) and continuum dynamical mass-balance equations on the other (equation based modelling), practically no attempt has been made to amalgamate these two approaches while also incorporating inherent stochastically induced fluctuations affecting the process overall. In this article, we will implement a minimalist scheme of modelling the time evolution of a realistic three dimensional landfill through a reaction-diffusion based approach, focusing on the coupled interactions of four key variables - solid mass density, hydrolysed mass density, acetogenic mass density and methanogenic mass density, that themselves are stochastically affected by fluctuations, coupled with diffusive relaxation of the individual densities, in ambient surroundings. Our results indicate that close to the linearly stable limit, the large time steady state properties, arising out of a series of complex coupled interactions between the stochastically driven variables, are scarcely affected by the biochemical growth-decay statistics. Our results clearly show that an equilibrium landfill structure is primarily determined by the solid and hydrolysed mass densities only rendering the other variables as statistically "irrelevant" in this (large time) asymptotic limit. The other major implication of incorporation of stochasticity in the landfill evolution dynamics is in the hugely reduced production times of the plants that are now approximately 20-30 years instead of the previous deterministic model predictions of 50 years and above. The predictions from this stochastic model are in conformity with available experimental observations.
Resumo:
We provide theory and evidence to complement Choi's [RFS, 2013] important new insights on the returns to equity in `value' firms. We show that higher future earnings growth ameliorates the value-reducing effect of leverage and, because the market for earnings is incomplete, reduces the earnings-risk sensitivity of the default option. Ceteris paribus, a levered firm with low (high) earnings growth is more sensitive to the first (second) of these effects thus generating higher (lower) expected returns. We demonstrate this by modeling equity as an Asian-style call option on net earnings and find significant empirical support for our hypotheses.
Resumo:
The value premium is well established in empirical asset pricing, but to date there is little understanding as to its fundamental drivers. We use a stochastic earnings valuation model to establish a direct link between the volatility of future earnings growth and firm value. We illustrate that risky earnings growth affects growth and value firms differently. We provide empirical evidence that the volatility of future earnings growth is a significant determinant of the value premium. Using data on individual firms and characteristic-sorted test portfolios, we also find that earnings growth volatility is significant in explaining the cross-sectional variation of stock returns. Our findings imply that the value premium is the rational consequence of accounting for risky earnings growth in the firm valuation process.
Inter-Organisational Approaches to Regional Growth Management: A Case Study in South East Queensland