983 resultados para steam injection continuous
Resumo:
The production of heavy oil fields, typical in the Northeastern region, is commonly stimulated by steam injection. High bottom hole temperatures are responsible not only for the development of deleterious stresses of the cement sheath but also for cement strength retrogression. To overcome this unfavorable scenario, polymeric admixtures can be added to cement slurries to improve its fracture energy and silica flour to prevent strength retrogression. Therefore, the objective of the present study was to investigate the effect of the addition of different concentrations of polyurethane (5-25%) to cement slurries containing 40% BWOC silica flour. The resulting slurries were characterized using standard API (American Petroleum Institute) laboratory tests. In addition to them, the mechanical properties of the slurries, including elastic modulus and microhardness were also evaluated. The results revealed that density, free water and stability of the composite cement/silica/polyurethane slurries were within acceptable limits. The rheological behavior of the slurries, including plastic viscosity, yield strength and gel strength increased with the addition of 10% BWOC polyurethane. The presence of polyurethane reduced the fluid loss of the slurries as well as their elastic modulus. Composite slurries also depicted longer setting times due to the presence of the polymer. As expected, both the mechanical strength and microhardness of the slurries decreased with the addition of polyurethane. However, at high bottom hole temperatures, the strength of the slurries containing silica and polyurethane was far superior than that of plain cement slurries. In summary, the use of polyurethane combined with silica is an interesting solution to better adequate the mechanical behavior of cement slurries to heavy oil fields subjected to steam injection
Resumo:
In Brazilian Northeast there are reservoirs with heavy oil, which use steam flooding as a recovery method. This process allows to reduce oil viscosity, increasing its mobility and consequently its oil recovery. Steam injection is a thermal method and can occurs in continues or cyclic form. Cyclic steam stimulation (CSS) can be repeated several times. Each cycle consisting of three stages: steam injection, soaking time and production phase. CSS becomes less efficient with an increase of number of cycles. Thus, this work aims to study the influence of compositional models in cyclic steam injection and the effects of some parameters, such like: flow injection, steam quality and temperature of steam injected, analyzing the influence of pseudocomponents numbers on oil rate, cumulative oil, oil recovery and simulation time. In the situations analyzed was compared the model of fluid of three phases and three components known as Blackoil . Simulations were done using commercial software (CMG), it was analyzed a homogeneous reservoir with characteristics similar to those found in Brazilian Northeast. It was observed that an increase of components number, increase the time spent in simulation. As for analyzed parameters, it appears that the steam rate, and steam quality has influence on cumulative oil and oil recovery. The number of components did not a lot influenced on oil recovery, however it has influenced on gas production
Resumo:
The oil companies in the area in general are looking for new technologies that can increase the recovery factor of oil contained in reservoirs. These investments are mainly aimed at reducing the costs of projects which are high. Steam injection is one of these special methods of recovery in which steam is injected into the reservoir in order to reduce the viscosity of the oil and make it more mobile. The process assisted gravity drainage steam (SAGD) using steam injection in its mechanism, as well as two parallel horizontal wells. In this process steam is injected through the horizontal injection well, then a vapor chamber is formed by heating the oil in the reservoir and, by the action of gravitational forces, this oil is drained down to where the production well. This study aims to analyze the influence of pressure drop and heat along the injection well in the SAGD process. Numerical simulations were performed using the thermal simulator STARS of CMG (Computer Modeling Group). The parameters studied were the thermal conductivity of the formation, the flow of steam injection, the inner diameter of the column, the steam quality and temperature. A factorial design was used to verify the influence of the parameters studied in the recovery factor. We also analyzed different injection flow rates for the model with pressure drop and no pressure drop, as well as different maximum flow rates of oil production. Finally, we performed an economic analysis of the two models in order to check the profitability of the projects studied. The results showed that the pressure drop in injection well have a significant influence on the SAGD process.
Resumo:
Nowadays, most of the hydrocarbon reserves in the world are in the form of heavy oil, ultra - heavy or bitumen. For the extraction and production of this resource is required to implement new technologies. One of the promising processes for the recovery of this oil is the Expanding Solvent Steam Assisted Gravity Drainage (ES-SAGD) which uses two parallel horizontal wells, where the injection well is situated vertically above the production well. The completion of the process occurs upon injection of a hydrocarbon additive at low concentration in conjunction with steam. The steam adds heat to reduce the viscosity of the oil and solvent aids in reducing the interfacial tension between oil/ solvent. The main force acting in this process is the gravitational and the heat transfer takes place by conduction, convection and latent heat of steam. In this study was used the discretized wellbore model, where the well is discretized in the same way that the reservoir and each section of the well treated as a block of grid, with interblock connection with the reservoir. This study aims to analyze the influence of the pressure drop and heat along the injection well in the ES-SAGD process. The model used for the study is a homogeneous reservoir, semi synthetic with characteristics of the Brazilian Northeast and numerical simulations were performed using the STARS thermal simulator from CMG (Computer Modelling Group). The operational parameters analyzed were: percentage of solvent injected, the flow of steam injection, vertical distance between the wells and steam quality. All of them were significant in oil recovery factor positively influencing this. The results showed that, for all cases analyzed, the model considers the pressure drop has cumulative production of oil below its respective model that disregards such loss. This difference is more pronounced the lower the value of the flow of steam injection
Resumo:
Although there are a wide variety of additives that act in fresh state, to adjust the properties of cement, there is also a search by additions that improve the tenacity of the cement in the hardened state. This, in turn, can often be increased by inserting fibers, which act on the deflection of microcracks. This study aimed to use a microfiber glass wool (silica-based) as an additive reinforcing the cement matrix, improving the rupture tenacity, in order to prevent the propagation of microcracks in the cement sheath commonly found in oil wells submitted to high temperatures. The fibers were added at different concentrations, 2 to 5% (BWOC) and varied average sizes, grinding for 90 s, 180 s, 300 s, 600 s. The cement slurries were made with a density of 1,90 g/ cm3 (15,6 lb/gal), using Portland cement CPP- Special Class as the hydraulic binder and 40% silica flour. The characterization of the fiber was made by scanning electron microscopy (SEM), particle size by sieving, X-ray fluorescence (XRF), X-ray diffraction (XRD) and thermogravimetry (TG / DTG). Were performed technological tests set by the API (American Petroleum Institute) by rheology, stability, free water, compressive strength, as well as testing rupture energy, elastic modulus and permeability. The characterization results showed good thermal stability of the microfiber glass wool for application in oil wells submitted to steam injection and, also, that from the particle size data, it was possible to suggest that microfibers milled up to 300 s, are ideal to act as reinforcement to the cement slurries. The rheological parameters, there was committal of plastic viscosity when larger lengths were inserted of microfiber (F90). The values obtained by free water and stability were presented according to API. The mechanical properties, the incorporation of microfiber to the cement slurries gave better rupture tenacity, as compared to reference cement slurries. The values of compressive strength, elastic modulus and permeability have been maintained with respect to the reference cement slurries. Thus, cement slurries reinforced with microfiber glass wool can ensure good application for cementing oil wells submitted to steam injection, which requires control of microcracks, due to the thermal gradients
Resumo:
Many of hydrocarbon reserves existing in the world are formed by heavy oils (°API between 10 and 20). Moreover, several heavy oil fields are mature and, thus, offer great challenges for oil industry. Among the thermal methods used to recover these resources, steamflooding has been the main economically viable alternative. Latent heat carried by steam heats the reservoir, reducing oil viscosity and facilitating the production. This method has many variations and has been studied both theoretically and experimentally (in pilot projects and in full field applications). In order to increase oil recovery and reduce steam injection costs, the injection of alternative fluid has been used on three main ways: alternately, co-injected with steam and after steam injection interruption. The main objective of these injection systems is to reduce the amount of heat supplied to the reservoir, using cheaper fluids and maintaining the same oil production levels. This works discusses the use of carbon dioxide, nitrogen, methane and water as an alternative fluid to the steam. The analyzed parameters were oil recoveries and net cumulative oil productions. The reservoir simulation model corresponds to an oil reservoir of 100 m x 100 m x 28 m size, on a Cartesian coordinates system (x, y and z directions). It is a semi synthetic model with some reservoir data similar to those found in Brazilian Potiguar Basin. All studied cases were done using the simulator STARS from CMG (Computer Modelling Group, version 2009.10). It was found that waterflood after steam injection interruption achieved the highest net cumulative oil compared to other fluids injection. Moreover, it was observed that steam and alternative fluids, co-injected and alternately, did not present increase on profitability project compared with steamflooding
Resumo:
A significant fraction of the hydrocarbon reserves in the world is formed by heavy oils. From the thermal methods used to recovery these resources, Steamflooding has been one of the main economically viable alternatives. In Brazil, this technology is widely used by Petrobras in Northeast fields. Latent heat carried by steam heats the oil in the reservoir, reducing its viscosity and facilitating the production. In the last years, an alternative more and more used by the oil industry to increase the efficiency of this mechanism has been the addition of solvents. When co-injected with steam, the vaporized solvent condenses in the cooler regions of the reservoir and mixes with the oil, creating a low viscosity zone between the steam and the heavy oil. The mobility of the displaced fluid is then improved, resulting in an increase of oil recovery. To better understand this improved oil recovery method and investigate its applicability in reservoirs with properties similar to those found in Potiguar Basin, a numerical study was done to analyze the influence of some operational parameters (steam injection rate, injected solvent volume and solvent type) on oil recovery. Simulations were performed in STARS ("Steam, Thermal, and Advanced Processes Reservoir Simulator"), a CMG ("Computer Modelling Group") program, version 2009.10. It was found that solvents addition to the injected steam not only anticipated the heated oil bank arrival to the producer well, but also increased the oil recovery. Lower cold water equivalent volumes were required to achieve the same oil recoveries from the models that injected only steam. Furthermore, much of the injected solvent was produced with the oil from the reservoir
Resumo:
Steam injection is a method usually applied to very viscous oils and consists of injecting heat to reduce the viscosity and, therefore, increase the oil mobility, improving the oil production. For designing a steam injection project it is necessary to have a reservoir simulation in order to define the various parameters necessary for an efficient heat reservoir management, and with this, improve the recovery factor of the reservoir. The purpose of this work is to show the influence of the coupled wellbore/reservoir on the thermal simulation of reservoirs under cyclic steam stimulation. In this study, the methodology used in the solution of the problem involved the development of a wellbore model for the integration of steam flow model in injection wellbores, VapMec, and a blackoil reservoir model for the injection of cyclic steam in oil reservoirs. Thus, case studies were developed for shallow and deep reservoirs, whereas the usual configurations of injector well existing in the oil industry, i.e., conventional tubing without packer, conventional tubing with packer and insulated tubing with packer. A comparative study of the injection and production parameters was performed, always considering the same operational conditions, for the two simulation models, non-coupled and a coupled model. It was observed that the results are very similar for the specified well injection rate, whereas significant differences for the specified well pressure. Finally, on the basis of computational experiments, it was concluded that the influence of the coupled wellbore/reservoir in thermal simulations using cyclic steam injection as an enhanced oil recovery method is greater for the specified well pressure, while for the specified well injection rate, the steam flow model for the injector well and the reservoir may be simulated in a non- coupled way
Resumo:
Improved glycemic control is the only treatment that has been shown to be effective for diabetic peripheral neuropathy in patients with type 1 diabetes (1). Continuous subcutaneous insulin infusion (CSII) is superior to multiple daily insulin injection (MDI) for reducing HbA1c and hypoglycemic events (2). Here, we have compared the benefits of CSII compared withMDI for neuropathy over 24months....
Resumo:
We investigate numerically and experimentally the properties of a passively mode locked quantum dot semiconductor laser under the influence of cw optical injection. We demonstrate that the waveform instability at high pumping for these devices can be overcome when one mode of the device is locked to the injected master laser and additionally show spectral narrowing and tunability. Experimental and numerical analyses demonstrate that the stable locking boundaries are similar to these obtained for optical injection in CW lasers. © 2010 American Institute of Physics.
Resumo:
We investigate numerically and experimentally the properties of a passively mode locked quantum dot semiconductor laser under the influence of cw optical injection. We demonstrate that the waveform instability at high pumping for these devices can be overcome when one mode of the device is locked to the injected master laser and additionally show spectral narrowing and tunability. Experimental and numerical analyses demonstrate that the stable locking boundaries are similar to these obtained for optical injection in CW lasers. © 2010 American Institute of Physics.
Resumo:
The jet characteristics and the fluid flow pattern in a continuous slab caster have been studied using a water model. The fluid jet is studied under free fall and submerged discharge conditions. In the latter case, the jet was followed by dye-injection technique and image analyser was used to find out the effect of nozzle parameters on jet-spread angle, jet-discharge angle and the volume entrainment by the jet. All free-fall jets with nozzle port angle zero and upward are found to be spinning. Some of the free-fall jets with downward nozzle-port angle are found to be spinning and rest are smooth. The spinning direction of the jets are found to change with time. The well depth, port diameter and the inner diameter of the nozzle have a clear effect on the free-fall jets with downward port angle. The jet-spread angle is found to be about 17-degrees for smooth jets. The spread angle for spinning jet increases as the nozzle-port angle is increased from downward 25 to upward 15-degrees. The jet-discharge angle is always downward even when the nozzle-discharge ports are angled upward. The extent of volume entrainment by the spinning jet is higher and it increases as the nozzle-port angle is increased from 25 downward to 15-degrees upward.