973 resultados para statistical speaker models


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Relatively little is known about past cold-season temperature variability in high-Alpine regions because of a lack of natural cold-season temperature proxies as well as under-representation of high-altitude sites in meteorological, early-instrumental and documentary data sources. Recent studies have shown that chrysophyte stomatocysts, or simply cysts (sub-fossil algal remains of Chrysophyceae and Synurophyceae), are among the very few natural proxies that can be used to reconstruct cold-season temperatures. This study presents a quantitative, high-resolution (5-year), cold-season (Oct–May) temperature reconstruction based on sub-fossil chrysophyte stomatocysts in the annually laminated (varved) sediments of high-Alpine Lake Silvaplana, SE Switzerland (1,789 m a.s.l.), since AD 1500. We first explore the method used to translate an ecologically meaningful variable based on a biological proxy into a simple climate variable. A transfer function was applied to reconstruct the ‘date of spring mixing’ from cyst assemblages. Next, statistical regression models were tested to convert the reconstructed ‘dates of spring mixing’ into cold-season surface air temperatures with associated errors. The strengths and weaknesses of this approach are thoroughly tested. One much-debated, basic assumption for reconstructions (‘stationarity’), which states that only the environmental variable of interest has influenced cyst assemblages and the influence of confounding variables is negligible over time, is addressed in detail. Our inferences show that past cold-season air-temperature fluctuations were substantial and larger than those of other temperature reconstructions for Europe and the Alpine region. Interestingly, in this study, recent cold-season temperatures only just exceed those of previous, multi-decadal warm phases since AD 1500. These findings highlight the importance of local studies to assess natural climate variability at high altitudes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Statistical shape models are widely used in biomedical research. They are routinely implemented for automatic image segmentation or object identification in medical images. In these fields, however, the acquisition of the large training datasets, required to develop these models, is usually a time-consuming process. Even after this effort, the collections of datasets are often lost or mishandled resulting in replication of work. Objective: To solve these problems, the Virtual Skeleton Database (VSD) is proposed as a centralized storage system where the data necessary to build statistical shape models can be stored and shared. Methods: The VSD provides an online repository system tailored to the needs of the medical research community. The processing of the most common image file types, a statistical shape model framework, and an ontology-based search provide the generic tools to store, exchange, and retrieve digital medical datasets. The hosted data are accessible to the community, and collaborative research catalyzes their productivity. Results: To illustrate the need for an online repository for medical research, three exemplary projects of the VSD are presented: (1) an international collaboration to achieve improvement in cochlear surgery and implant optimization, (2) a population-based analysis of femoral fracture risk between genders, and (3) an online application developed for the evaluation and comparison of the segmentation of brain tumors. Conclusions: The VSD is a novel system for scientific collaboration for the medical image community with a data-centric concept and semantically driven search option for anatomical structures. The repository has been proven to be a useful tool for collaborative model building, as a resource for biomechanical population studies, or to enhance segmentation algorithms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Access to sufficient quantities of safe drinking water is a human right. Moreover, access to clean water is of public health relevance, particularly in semi-arid and Sahelian cities due to the risks of water contamination and transmission of water-borne diseases. We conducted a study in Nouakchott, the capital of Mauritania, to deepen the understanding of diarrhoeal incidence in space and time. We used an integrated geographical approach, combining socio-environmental, microbiological and epidemiological data from various sources, including spatially explicit surveys, laboratory analysis of water samples and reported diarrhoeal episodes. A geospatial technique was applied to determine the environmental and microbiological risk factors that govern diarrhoeal transmission. Statistical and cartographic analyses revealed concentration of unimproved sources of drinking water in the most densely populated areas of the city, coupled with a daily water allocation below the recommended standard of 20 l per person. Bacteriological analysis indicated that 93% of the non-piped water sources supplied at water points were contaminated with 10-80 coliform bacteria per 100 ml. Diarrhoea was the second most important disease reported at health centres, accounting for 12.8% of health care service consultations on average. Diarrhoeal episodes were concentrated in municipalities with the largest number of contaminated water sources. Environmental factors (e.g. lack of improved water sources) and bacteriological aspects (e.g. water contamination with coliform bacteria) are the main drivers explaining the spatio-temporal distribution of diarrhoea. We conclude that integrating environmental, microbiological and epidemiological variables with statistical regression models facilitates risk profiling of diarrhoeal diseases. Modes of water supply and water contamination were the main drivers of diarrhoea in this semi-arid urban context of Nouakchott, and hence require a strategy to improve water quality at the various levels of the supply chain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lyme disease Borrelia can infect humans and animals for months to years, despite the presence of an active host immune response. The vls antigenic variation system, which expresses the surface-exposed lipoprotein VlsE, plays a major role in B. burgdorferi immune evasion. Gene conversion between vls silent cassettes and the vlsE expression site occurs at high frequency during mammalian infection, resulting in sequence variation in the VlsE product. In this study, we examined vlsE sequence variation in B. burgdorferi B31 during mouse infection by analyzing 1,399 clones isolated from bladder, heart, joint, ear, and skin tissues of mice infected for 4 to 365 days. The median number of codon changes increased progressively in C3H/HeN mice from 4 to 28 days post infection, and no clones retained the parental vlsE sequence at 28 days. In contrast, the decrease in the number of clones with the parental vlsE sequence and the increase in the number of sequence changes occurred more gradually in severe combined immunodeficiency (SCID) mice. Clones containing a stop codon were isolated, indicating that continuous expression of full-length VlsE is not required for survival in vivo; also, these clones continued to undergo vlsE recombination. Analysis of clones with apparent single recombination events indicated that recombinations into vlsE are nonselective with regard to the silent cassette utilized, as well as the length and location of the recombination event. Sequence changes as small as one base pair were common. Fifteen percent of recovered vlsE variants contained "template-independent" sequence changes, which clustered in the variable regions of vlsE. We hypothesize that the increased frequency and complexity of vlsE sequence changes observed in clones recovered from immunocompetent mice (as compared with SCID mice) is due to rapid clearance of relatively invariant clones by variable region-specific anti-VlsE antibody responses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Barry Saltzman was a giant in the fields of meteorology and climate science. A leading figure in the study of weather and climate for over 40 yr, he has frequently been referred to as the "father of modern climate theory." Ahead of his time in many ways, Saltzman made significant contributions to our understanding of the general circulation and spectral energetics budget of the atmosphere, as well as climate change across a wide spectrum of time scales. In his endeavor to develop a unified theory of how the climate system works, lie played a role in the development of energy balance models, statistical dynamical models, and paleoclimate dynamical models. He was a pioneer in developing meteorologically motivated dynamical systems, including the progenitor of Lorenz's famous chaos model. In applying his own dynamical-systems approach to long-term climate change, he recognized the potential for using atmospheric general circulation models in a complimentary way. In 1998, he was awarded the Carl-Gustaf Rossby medal, the highest honor of the American Meteorological Society "for his life-long contributions to the study of the global circulation and the evolution of the earth's climate." In this paper, the authors summarize and place into perspective some of the most significant contributions that Barry Saltzman made during his long and distinguished career. This short review also serves as an introduction to the papers in this special issue of the Journal of Climate dedicated to Barry's memory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This chapter proposed a personalized X-ray reconstruction-based planning and post-operative treatment evaluation framework called iJoint for advancing modern Total Hip Arthroplasty (THA). Based on a mobile X-ray image calibration phantom and a unique 2D-3D reconstruction technique, iJoint can generate patient-specific models of hip joint by non-rigidly matching statistical shape models to the X-ray radiographs. Such a reconstruction enables a true 3D planning and treatment evaluation of hip arthroplasty from just 2D X-ray radiographs whose acquisition is part of the standard diagnostic and treatment loop. As part of the system, a 3D model-based planning environment provides surgeons with hip arthroplasty related parameters such as implant type, size, position, offset and leg length equalization. With this newly developed system, we are able to provide true 3D solutions for computer assisted planning of THA using only 2D X-ray radiographs, which is not only innovative but also cost-effective.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La presente Tesis plantea una metodología de análisis estadístico de roturas de tubería en redes de distribución de agua, que analiza la relación entre las roturas y la presión de agua y que propone la implantación de una gestión de presiones que reduzca el número de roturas que se producen en dichas redes. Las redes de distribución de agua se deterioran y una de sus graves consecuencias es la aparición de roturas frecuentes en sus tuberías. Las roturas llevan asociados elevados costes sociales, económicos y medioambientales y es por ello por lo que las compañías gestoras del agua tratan de reducirlas en la medida de lo posible. Las redes de distribución de agua se pueden dividir en zonas o sectores que facilitan su control y que pueden ser independientes o aislarse mediante válvulas, como ocurre en las redes de países más desarrollados, o pueden estar intercomunicados hidráulicamente. La implantación de una gestión de presiones suele llevarse a cabo a través de las válvulas reductoras de presión (VPR), que se instalan en las cabeceras de estos sectores y que controlan la presión aguas abajo de la misma, aunque varíe su caudal de entrada. Los métodos más conocidos de la gestión de presiones son la reducción de presiones, que es el control más habitual, el mantenimiento de la presión, la prevención y/o alivio de los aumentos repentinos de presión y el establecimiento de un control por alturas. A partir del año 2005 se empezó a reconocer el efecto de la gestión de presiones sobre la disminución de las roturas. En esta Tesis, se sugiere una gestión de presiones que controle los rangos de los indicadores de la presión de cabecera que más influyan en la probabilidad de roturas de tubería. Así, la presión del agua se caracteriza a través de indicadores obtenidos de la presión registrada en la cabecera de los sectores, debido a que se asume que esta presión es representativa de la presión de operación de todas las tuberías porque las pérdidas de carga son relativamente bajas y las diferencias topográficas se tienen en cuenta en el diseño de los sectores. Y los indicadores de presión, que se pueden definir como el estadístico calculado a partir de las series de la presión de cabecera sobre una ventana de tiempo, pueden proveer la información necesaria para ayudar a la toma de decisiones a los gestores del agua con el fin de reducir las roturas de tubería en las redes de distribución de agua. La primera parte de la metodología que se propone en esta Tesis trata de encontrar los indicadores de presión que influyen más en la probabilidad de roturas de tuberías. Para conocer si un indicador es influyente en la probabilidad de las roturas se comparan las estimaciones de las funciones de distribución acumulada (FDAs) de los indicadores de presiones, considerando dos situaciones: cuando se condicionan a la ocurrencia de una rotura (suceso raro) y cuando se calculan en la situación normal de operación (normal operación). Por lo general, las compañías gestoras cuentan con registros de roturas de los años más recientes y al encontrarse las tuberías enterradas se complica el acceso a la información. Por ello, se propone el uso de funciones de probabilidad que permiten reducir la incertidumbre asociada a los datos registrados. De esta forma, se determinan las funciones de distribución acumuladas (FDAs) de los valores del indicador de la serie de presión (situación normal de operación) y las FDAs de los valores del indicador en el momento de ocurrencia de las roturas (condicionado a las roturas). Si las funciones de distribución provienen de la misma población, no se puede deducir que el indicador claramente influya en la probabilidad de roturas. Sin embargo, si se prueba estadísticamente que las funciones proceden de la misma población, se puede concluir que existe una relación entre el indicador analizado y la ocurrencia de las roturas. Debido a que el número de valores del indicador de la FDA condicionada a las roturas es mucho menor que el número de valores del indicador de la FDA incondicional a las roturas, se generan series aleatorias a partir de los valores de los indicadores con el mismo número de valores que roturas registradas hay. De esta forma, se comparan las FDAs de series aleatorias del indicador con la FDA condicionada a las roturas del mismo indicador y se deduce si el indicador es influyente en la probabilidad de las roturas. Los indicadores de presión pueden depender de unos parámetros. A través de un análisis de sensibilidad y aplicando un test estadístico robusto se determina la situación en la que estos parámetros dan lugar a que el indicador sea más influyente en la probabilidad de las roturas. Al mismo tiempo, los indicadores se pueden calcular en función de dos parámetros de cálculo que se denominan el tiempo de anticipación y el ancho de ventana. El tiempo de anticipación es el tiempo (en horas) entre el final del periodo de computación del indicador de presión y la rotura, y el ancho de ventana es el número de valores de presión que se requieren para calcular el indicador de presión y que es múltiplo de 24 horas debido al comportamiento cíclico diario de la presión. Un análisis de sensibilidad de los parámetros de cálculo explica cuándo los indicadores de presión influyen más en la probabilidad de roturas. En la segunda parte de la metodología se presenta un modelo de diagnóstico bayesiano. Este tipo de modelo forma parte de los modelos estadísticos de prevención de roturas, parten de los datos registrados para establecer patrones de fallo y utilizan el teorema de Bayes para determinar la probabilidad de fallo cuando se condiciona la red a unas determinadas características. Así, a través del teorema de Bayes se comparan la FDA genérica del indicador con la FDA condicionada a las roturas y se determina cuándo la probabilidad de roturas aumenta para ciertos rangos del indicador que se ha inferido como influyente en las roturas. Se determina un ratio de probabilidad (RP) que cuando es superior a la unidad permite distinguir cuándo la probabilidad de roturas incrementa para determinados intervalos del indicador. La primera parte de la metodología se aplica a la red de distribución de la Comunidad de Madrid (España) y a la red de distribución de Ciudad de Panamá (Panamá). Tras el filtrado de datos se deduce que se puede aplicar la metodología en 15 sectores en la Comunidad de Madrid y en dos sectores, llamados corregimientos, en Ciudad de Panamá. Los resultados demuestran que en las dos redes los indicadores más influyentes en la probabilidad de las roturas son el rango de la presión, que supone la diferencia entre la presión máxima y la presión mínima, y la variabilidad de la presión, que considera la propiedad estadística de la desviación típica. Se trata, por tanto, de indicadores que hacen referencia a la dispersión de los datos, a la persistencia de la variación de la presión y que se puede asimilar en resistencia de materiales a la fatiga. La segunda parte de la metodología se ha aplicado a los indicadores influyentes en la probabilidad de las roturas de la Comunidad de Madrid y se ha deducido que la probabilidad de roturas aumenta para valores extremos del indicador del rango de la presión y del indicador de la variabilidad de la presión. Finalmente, se recomienda una gestión de presiones que limite los intervalos de los indicadores influyentes en la probabilidad de roturas que incrementen dicha probabilidad. La metodología propuesta puede aplicarse a otras redes de distribución y puede ayudar a las compañías gestoras a reducir el número de fallos en el sistema a través de la gestión de presiones. This Thesis presents a methodology for the statistical analysis of pipe breaks in water distribution networks. The methodology studies the relationship between pipe breaks and water pressure, and proposes a pressure management procedure to reduce the number of breaks that occur in such networks. One of the manifestations of the deterioration of water supply systems is frequent pipe breaks. System failures are one of the major challenges faced by water utilities, due to their associated social, economic and environmental costs. For all these reasons, water utilities aim at reducing the problem of break occurrence to as great an extent as possible. Water distribution networks can be divided into areas or sectors, which facilitates the control of the network. These areas may be independent or isolated by valves, as it usually happens in developing countries. Alternatively, they can be hydraulically interconnected. The implementation of pressure management strategies is usually carried out through pressure-reducing valves (PRV). These valves are installed at the head of the sectors and, although the inflow may vary significantly, they control the downstream pressure. The most popular methods of pressure management consist of pressure reduction, which is the common form of control, pressure sustaining, prevention and/or alleviation of pressure surges or large variations in pressure, and level/altitude control. From 2005 onwards, the effects of pressure management on burst frequencies have become more widely recognized in the technical literature. This thesis suggests a pressure management that controls the pressure indicator ranges most influential on the probability of pipe breaks. Operating pressure in a sector is characterized by means of a pressure indicator at the head of the DMA, as head losses are relatively small and topographical differences were accounted for at the design stage. The pressure indicator, which may be defined as the calculated statistic from the time series of pressure head over a specific time window, may provide necessary information to help water utilities to make decisions to reduce pipe breaks in water distribution networks. The first part of the methodology presented in this Thesis provides the pressure indicators which have the greatest impact on the probability of pipe breaks to be determined. In order to know whether a pressure indicator influences the probability of pipe breaks, the proposed methodology compares estimates of cumulative distribution functions (CDFs) of a pressure indicator through consideration of two situations: when they are conditioned to the occurrence of a pipe break (a rare event), and when they are not (a normal operation). Water utilities usually have a history of failures limited to recent periods of time, and it is difficult to have access to precise information in an underground network. Therefore, the use of distribution functions to address such imprecision of recorded data is proposed. Cumulative distribution functions (CDFs) derived from the time series of pressure indicators (normal operation) and CDFs of indicator values at times coincident with a reported pipe break (conditioned to breaks) are compared. If all estimated CDFs are drawn from the same population, there is no reason to infer that the studied indicator clearly influences the probability of the rare event. However, when it is statistically proven that the estimated CDFs do not come from the same population, the analysed indicator may have an influence on the occurrence of pipe breaks. Due to the fact that the number of indicator values used to estimate the CDF conditioned to breaks is much lower in comparison with the number of indicator values to estimate the CDF of the unconditional pressure series, and that the obtained results depend on the size of the compared samples, CDFs from random sets of the same size sampled from the unconditional indicator values are estimated. Therefore, the comparison between the estimated CDFs of random sets of the indicator and the estimated CDF conditioned to breaks allows knowledge of if the indicator is influential on the probability of pipe breaks. Pressure indicators depend on various parameters. Sensitivity analysis and a robust statistical test allow determining the indicator for which these parameters result most influential on the probability of pipe breaks. At the same time, indicators can be calculated according to two model parameters, named as the anticipation time and the window width. The anticipation time refers to the time (hours) between the end of the period for the computation of the pressure indicator and the break. The window width is the number of instantaneous pressure values required to calculate the pressure indicator and is multiple of 24 hours, as water pressure has a cyclical behaviour which lasts one day. A sensitivity analysis of the model parameters explains when the pressure indicator is more influential on the probability of pipe breaks. The second part of the methodology presents a Bayesian diagnostic model. This kind of model belongs to the class of statistical predictive models, which are based on historical data, represent break behavior and patterns in water mains, and use the Bayes’ theorem to condition the probability of failure to specific system characteristics. The Bayes’ theorem allows comparing the break-conditioned FDA and the unconditional FDA of the indicators and determining when the probability of pipe breaks increases for certain pressure indicator ranges. A defined probability ratio provides a measure to establish whether the probability of breaks increases for certain ranges of the pressure indicator. The first part of the methodology is applied to the water distribution network of Madrid (Spain) and to the water distribution network of Panama City (Panama). The data filtering method suggests that the methodology can be applied to 15 sectors in Madrid and to two areas in Panama City. The results show that, in both systems, the most influential indicators on the probability of pipe breaks are the pressure range, which is the difference between the maximum pressure and the minimum pressure, and pressure variability, referred to the statistical property of the standard deviation. Therefore, they represent the dispersion of the data, the persistence of the variation in pressure and may be related to the fatigue in material resistance. The second part of the methodology has been applied to the influential indicators on the probability of pipe breaks in the water distribution network of Madrid. The main conclusion is that the probability of pipe breaks increases for the extreme values of the pressure range indicator and of the pressure variability indicator. Finally, a pressure management which limits the ranges of the pressure indicators influential on the probability of pipe breaks that increase such probability is recommended. The methodology presented here is general, may be applied to other water distribution networks, and could help water utilities reduce the number of system failures through pressure management.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electricity market price forecast is a changeling yet very important task for electricity market managers and participants. Due to the complexity and uncertainties in the power grid, electricity prices are highly volatile and normally carry with spikes. which may be (ens or even hundreds of times higher than the normal price. Such electricity spikes are very difficult to be predicted. So far. most of the research on electricity price forecast is based on the normal range electricity prices. This paper proposes a data mining based electricity price forecast framework, which can predict the normal price as well as the price spikes. The normal price can be, predicted by a previously proposed wavelet and neural network based forecast model, while the spikes are forecasted based on a data mining approach. This paper focuses on the spike prediction and explores the reasons for price spikes based on the measurement of a proposed composite supply-demand balance index (SDI) and relative demand index (RDI). These indices are able to reflect the relationship among electricity demand, electricity supply and electricity reserve capacity. The proposed model is based on a mining database including market clearing price, trading hour. electricity), demand, electricity supply and reserve. Bayesian classification and similarity searching techniques are used to mine the database to find out the internal relationships between electricity price spikes and these proposed. The mining results are used to form the price spike forecast model. This proposed model is able to generate forecasted price spike, level of spike and associated forecast confidence level. The model is tested with the Queensland electricity market data with promising results. Crown Copyright (C) 2004 Published by Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many variables that are of interest in social science research are nominal variables with two or more categories, such as employment status, occupation, political preference, or self-reported health status. With longitudinal survey data it is possible to analyse the transitions of individuals between different employment states or occupations (for example). In the statistical literature, models for analysing categorical dependent variables with repeated observations belong to the family of models known as generalized linear mixed models (GLMMs). The specific GLMM for a dependent variable with three or more categories is the multinomial logit random effects model. For these models, the marginal distribution of the response does not have a closed form solution and hence numerical integration must be used to obtain maximum likelihood estimates for the model parameters. Techniques for implementing the numerical integration are available but are computationally intensive requiring a large amount of computer processing time that increases with the number of clusters (or individuals) in the data and are not always readily accessible to the practitioner in standard software. For the purposes of analysing categorical response data from a longitudinal social survey, there is clearly a need to evaluate the existing procedures for estimating multinomial logit random effects model in terms of accuracy, efficiency and computing time. The computational time will have significant implications as to the preferred approach by researchers. In this paper we evaluate statistical software procedures that utilise adaptive Gaussian quadrature and MCMC methods, with specific application to modeling employment status of women using a GLMM, over three waves of the HILDA survey.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis provides a set of tools for managing uncertainty in Web-based models and workflows.To support the use of these tools, this thesis firstly provides a framework for exposing models through Web services. An introduction to uncertainty management, Web service interfaces,and workflow standards and technologies is given, with a particular focus on the geospatial domain.An existing specification for exposing geospatial models and processes, theWeb Processing Service (WPS), is critically reviewed. A processing service framework is presented as a solutionto usability issues with the WPS standard. The framework implements support for Simple ObjectAccess Protocol (SOAP), Web Service Description Language (WSDL) and JavaScript Object Notation (JSON), allowing models to be consumed by a variety of tools and software. Strategies for communicating with models from Web service interfaces are discussed, demonstrating the difficultly of exposing existing models on the Web. This thesis then reviews existing mechanisms for uncertainty management, with an emphasis on emulator methods for building efficient statistical surrogate models. A tool is developed to solve accessibility issues with such methods, by providing a Web-based user interface and backend to ease the process of building and integrating emulators. These tools, plus the processing service framework, are applied to a real case study as part of the UncertWeb project. The usability of the framework is proved with the implementation of aWeb-based workflow for predicting future crop yields in the UK, also demonstrating the abilities of the tools for emulator building and integration. Future directions for the development of the tools are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We survey articles covering how hedge fund returns are explained, using largely non-linear multifactor models that examine the non-linear pay-offs and exposures of hedge funds. We provide an integrated view of the implicit factor and statistical factor models that are largely able to explain the hedge fund return-generating process. We present their evolution through time by discussing pioneering studies that made a significant contribution to knowledge, and also recent innovative studies that examine hedge fund exposures using advanced econometric methods. This is the first review that analyzes very recent studies that explain a large part of hedge fund variation. We conclude by presenting some gaps for future research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introdução: A perda transitória da consciência e tónus postural seguido de rápida recuperação é definida como síncope. Tem sido dada atenção a uma síncope de origem central com descida da pressão sistémica conhecida por síncope vasovagal (SVV). Objetivos: A análise da variabilidade da frequência cardíaca (HRV) é uma das principais estratégias para estudar a SVV através de protocolos padrão (por exemplo tilt test). O principal objetivo deste trabalho é compreender a importância relativa de diversas variáveis, tais como pressão arterial diastólica e sistólica, (dBP) e (sBP), volume sistólico (SV) e resistência periférica total (TPR) na HRV. Métodos: Foram usados modelos estatísticos mistos para modelar o comportamento das variáveis acima descritas na HRV. Analisaram-se mais de mil e quinhentas observações de quatro pacientes com SVV, previamente testados com análise espectral clássica para a fase basal (LF/HF=3.01) e fases de tilt (LF/HF=0.64), indicando uma predominância vagal no período tilt. Resultados: O modelo 1 revelou o papel importante da dBP e uma baixa influência de SV, na fase de tilt, relativos à HRV. No modelo 2 a TPR revelou uma baixa influência na HRV na fase de tilt entre os pacientes. Conclusões: Verificou-se que a HRV é influenciada por um conjunto de variáveis fisiológicas, cuja contribuição individual pode ser usada para compreender as flutuações cardíacas. O uso de modelos estatísticos salientou a importância de estudar o papel da dBP e SV na SVV.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this study was to determine the maximum depth, structure, diameter and biomass of the roots of common woody species in two savanna physiognomies (savanna woodland and open woody savanna) in Brazil's Pantanal wetland. The root systems of 37 trees and 34 shrubs of 15 savanna species were excavated to measure their length and depth and estimate the total root biomass through allometric relationships with stem diameter at ground level. In general, statistical regression models between root weight and stem diameter at ground level showed a significance of P < 0.05 and R2 values close to or above 0.8. The average depths of the root system in wetland savanna woodland and open woody savanna are 0.8 ± 0.3 m and 0.7 ± 0.2 m, respectively, and differ from the root systems of savanna woody species in non-flooding areas, whose depth usually ranges from 3 to 19 m.Weattribute this difference to the adaptation of woody plant to the shallow water table, particularly during the wet season. This singularity of woody species in wetland savannas is important when considering biomass and carbon stocks for national and global carbon inventories.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider a simple Maier-Saupe statistical model with the inclusion of disorder degrees of freedom to mimic the phase diagram of a mixture of rodlike and disklike molecules. A quenched distribution of shapes leads to a phase diagram with two uniaxial and a biaxial nematic structure. A thermalized distribution, however, which is more adequate to liquid mixtures, precludes the stability of this biaxial phase. We then use a two-temperature formalism, and assume a separation of relaxation times, to show that a partial degree of annealing is already sufficient to stabilize a biaxial nematic structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.