954 resultados para spleen cells proliferation
Resumo:
Cellular immune responses to Anisakis simplex L3 antigens were investigated in BALB/c mice injected subcutaneously with a homologous crude extract (CE). Popliteal lymph nodes (PLN) were found to be increased in size and weight after A. simplex CE footpad injection. The effects of A. simplex CE in vitro proliferation were assayed with non-fractionated PLN cells or nylon-wool purified T cells derived from pooled lymph node cells of mice subcutaneously injected with CE. Spleen cells from immunized animals (antigen alone, or larva alone, or antigen plus larva) were studied by flow cytometry. The immunization induced a high proportion of CD4 + and TCR alpha beta + T cells. The number of B cells (CD45 + and TCR alpha beta-) in pre-immunized and infected mice was lower than that observed in animals subjected to infection only. The number of CD4 + T cells increased in the infected and in the pre-immunized and infected mice. In the latter, a decrease of CD8a + T cells was noted. The greatest increase in CD8a+ and TCR alpha beta- T cells was found in mice that had been subjected to infection only. Histological analysis showed that the most prominent lesions were gastric and intestinal in animals infected orally with one larva.
Resumo:
Pós-graduação em Doenças Tropicais - FMB
Resumo:
Susceptibility to infections, autoimmune disorders and tumor progression is strongly influenced by the activity of the endocrine and nervous systems in response to a stressful stimulus. When the adaptive system is switched on and off efficiently, the body is able to recover from the stress imposed. However, when the system is activated repeatedly or the activity is sustained, as during chronic or excessive stress, an allostatic load is generated, which can lead to disease over long periods of time. We investigated the effects of chronic cold stress in BALB/c mice (4 degrees C/4 h daily for 7 days) on functions of macrophages. We found that chronic cold stress induced a regulatory phenotype in macrophages, characterized by diminished phagocytic ability, decreased TNF-alpha and IL-6 and increased IL-10 production. In addition, resting macrophages from mice exposed to cold stress stimulated spleen cells to produce regulatory cytokines, and an immunosuppressive state that impaired stressed mice to control Trypanosoma cruzi proliferation. These regulatory effects correlated with an increase in macrophage expression of 11 beta-hydroxysteroid dehydrogenase, an enzyme that converts inactive glucocorticoid into its active form. As stress is a common aspect of modern life and plays a role in the etiology of many diseases, the results of this study are important for improving knowledge regarding the neuro-immune-endocrine interactions that occur during stress and to highlight the role of macrophages in the immunosuppression induced by chronic stress. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Elevated levels of copper have been detected in various types of human cancer cells, such as breast cancer cells, and a number of mechanisms have been proposed to explain the action and influence of copper on tumor progress. In this work, we found that stimulating the proliferation of mammary epithelial MCF7 cells with the high-redox-potential copper complex Cu (GlyGlyHis) is associated with the copper-induced intracellular generation of reactive oxygen species (ROS) that induces lipid peroxidation and causes increased roughness of external cell membranes, which leads to the formation of larger cell domes. The results presented herein provide new insights into the molecular link between copper and the proliferation of breast cancer cells and, consequently, into the mechanism by which changes in redox balance and ROS accumulation regulates cell membrane roughness. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Abstract Background Adhesion to extracellular matrix (ECM) components has been implicated in the proliferative and invasive properties of tumor cells. We investigated the ability of C6 glioma cells to attach to ECM components in vitro and described the regulatory role of glycosaminoglycans (GAGs) on their adhesion to the substrate, proliferation and migration. Results ECM proteins (type IV collagen, laminin and fibronectin) stimulate rat C6 glioma cell line adhesion in vitro, in a dose-dependent manner. The higher adhesion values were achieved with type IV collagen. Exogenous heparin or chondroitin sulfate impaired, in a dose-dependent manner the attachment of C6 glioma cell line to laminin and fibronectin, but not to type IV collagen. Dextran sulfate did not affect C6 adhesion to any ECM protein analyzed, indicating a specific role of GAGs in mediating glioma adhesion to laminin and fibronectin. GAGs and dextran sulfate did not induce C6 glioma detachment from any tested substrate suggesting specific effect in the initial step of cell adhesion. Furthermore, heparin and chondroitin sulfate impaired C6 cells proliferation on fibronectin, but not on type IV collagen or laminin. In contrast, both GAGs stimulate the glioma migration on laminin without effect on type IV collagen or fibronectin. Conclusion The results suggest that GAGs and proteoglycans regulate glioma cell adhesion to ECM proteins in specific manner leading to cell proliferation or cell migration, according to the ECM composition, thus modulating tumor cell properties.
Resumo:
In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis.
Resumo:
C57BL/6, BALB/c, and CBA/Ca mouse strains with different MHC-I haplotypes were compared with respect to susceptibility to Neospora caninum infection. Groups of 5 mice received , , or tachyzoites of the NC-Liverpool isolate by intraperitoneal injection and were observed for disease symptoms. Humoral responses, splenocyte interferon-γ (IFN-γ) production, cerebral parasite loads, and histopathology were evaluated at human end points or the latest at 34 days postinfection (PI). The mortality rates in C57BL/6 mice were the highest, and relatively high levels of IgG1 antibodies were detected in those mice surviving till 34 days PI. In lymphocyte proliferation assays, spleen cells from C57BL6 mice stimulated with N. caninum antigen extract exhibited large variations in IFN-γ production. In BALB/c mice mortality was 0% at the lowest and 100% at the highest infection dose. Serologically they responded with high levels of both IgG2a and IgG1 subclasses, and lymphocyte proliferation assays of surviving mice yielded lower IFN-γ levels. CBA/Ca mice were the most resistant, with no animal succumbing to infection at a dose of and tachyzoites, but 100% mortality at tachyzoites. High IgG2a levels as well as increased IFN-γ in lymphocyte proliferation assays were measured in CBA/Ca mice infected with tachyzoites.
Resumo:
BACKGROUND The growth potential of the tumor-like Echinococcus multilocularis metacestode (causing alveolar echinococcosis, AE) is directly linked to the nature/function of the periparasitic host immune-mediated processes. We previously showed that Fibrinogen-like-protein 2 (FGL2), a novel CD4+CD25+ Treg effector molecule, was over-expressed in the liver of mice experimentally infected with E. multilocularis. However, little is known about its contribution to the control of this chronic helminth infection. METHODS/FINDINGS Key parameters for infection outcome in E. multilocularis-infected fgl2-/- (AE-fgl2-/-) and wild type (AE-WT) mice at 1 and 4 month(s) post-infection were (i) parasite load (i. e. wet weight of parasitic metacestode tissue), and (ii) parasite cell proliferation as assessed by determining E. multilocularis 14-3-3 gene expression levels. Serum FGL2 levels were measured by ELISA. Spleen cells cultured with ConA for 48h or with E. multilocularis Vesicle Fluid (VF) for 96h were analyzed ex-vivo and in-vitro. In addition, spleen cells from non-infected WT mice were cultured with rFGL2/anti-FGL2 or rIL-17A/anti-IL-17A for further functional studies. For Treg-immune-suppression-assays, purified CD4+CD25+ Treg suspensions were incubated with CD4+ effector T cells in the presence of ConA and irradiated spleen cells as APCs. Flow cytometry and qRT-PCR were used to assess Treg, Th17-, Th1-, Th2-type immune responses and maturation of dendritic cells. We showed that AE-fgl2-/- mice exhibited (as compared to AE-WT-animals) (a) a significantly lower parasite load with reduced proliferation activity, (b) an increased T cell proliferative response to ConA, (c) reduced Treg numbers and function, and (d) a persistent capacity of Th1 polarization and DC maturation. CONCLUSIONS FGL2 appears as one of the key players in immune regulatory processes favoring metacestode survival by promoting Treg cell activity and IL-17A production that contributes to FGL2-regulation. Prospectively, targeting FGL2 could be an option to develop an immunotherapy against AE and other chronic parasitic diseases.
Resumo:
FTY720 (Fingolimod; Gilenya®) is an immune-modulatory prodrug which, after intracellular phosphorylation by sphingosine kinase 2 (SphK2) and export, mimics effects of the endogenous lipid mediator sphingosine-1-phosphate. Fingolimod has been introduced to treat relapsing-remitting multiple sclerosis. However, little has been published about the immune cell membrane penetration and subcellular distribution of FTY720 and FTY720-P. Thus, we applied a newly established LC-MS/MS method to analyze the subcellular distribution of FTY720 and FTY720-P in subcellular compartments of spleen cells of wild type, SphK1- and SphK2-deficient mice. These studies demonstrated that, when normalized to the original cell volume and calculated on molar basis, FTY720 and FTY720-P dramatically accumulated several hundredfold within immune cells reaching micromolar concentrations. The amount and distribution of FTY720 was differentially affected by SphK1- and SphK2-deficiency. On the background of recently described relevant intracellular FTY720 effects in the nanomolar range and the prolonged application in multiple sclerosis, this data showing a substantial intracellular accumulation of FTY720, has to be considered for benefit/risk ratio estimates.
Resumo:
We obtained mice deficient for major histocompatibility complex (MHC) molecules encoded by the H-2K and H-2D genes. H-2 KbDb −/− mice express no detectable classical MHC class I-region associated (Ia) heavy chains, although β2-microglobulin and the nonclassical class Ib proteins examined are expressed normally. KbDb −/− mice have greatly reduced numbers of mature CD8+ T cells, indicating that selection of the vast majority (>90%) of CD8+ T cells cannot be compensated for by β2-microglobulin-associated molecules other than classical H-2K and D locus products. In accord with the greatly reduced number of CD8+ T cells, spleen cells from KbDb −/− mice do not generate cytotoxic responses in primary mixed-lymphocyte cultures against MHC-disparate (allogeneic) cells. However, in vivo priming of KbDb −/− mice with allogeneic cells resulted in strong CD8+ MHC class Ia-specific allogeneic responses. Thus, a minor population of functionally competent peripheral CD8+ T cells capable of strong cytotoxic activity arises in the complete absence of classical MHC class Ia molecules. KbDb −/− animals also have natural killer cells that retain their cytotoxic potential.
Resumo:
Immune mechanisms contribute to cerebral ischemic injury. Therapeutic immunosuppressive options are limited due to systemic side effects. We attempted to achieve immunosuppression in the brain through oral tolerance to myelin basic protein (MBP). Lewis rats were fed low-dose bovine MBP or ovalbumin (1 mg, five times) before 3 h of middle cerebral artery occlusion (MCAO). A third group of animals was sensitized to MBP but did not survive the post-stroke period. Infarct size at 24 and 96 h after ischemia was significantly less in tolerized animals. Tolerance to MBP was confirmed in vivo by a decrease in delayed-type hypersensitivity to MBP. Systemic immune responses, characterized in vitro by spleen cell proliferation to Con A, lipopolysaccharide, and MBP, again confirmed antigen-specific immunologic tolerance. Immunohistochemistry revealed transforming growth factor β1 production by T cells in the brains of tolerized but not control animals. Systemic transforming growth factor β1 levels were equivalent in both groups. Corticosterone levels 24 h after surgery were elevated in all sham-operated animals and ischemic control animals but not in ischemic tolerized animals. These results demonstrate that antigen-specific modulation of the immune response decreases infarct size after focal cerebral ischemia and that sensitization to the same antigen may actually worsen outcome.
Resumo:
Striated muscle is the predominant site of gene expression after i.m. immunization of plasmid DNA, but it is not clear if myocytes or professional antigen-presenting cells (APCs) of hematopoietic origin present the encoded antigens to class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocytes (CTL). To address this issue, CTL responses were assessed in mice engrafted with immune systems that were partially MHC matched with antigen-producing muscle cells. Spleen cells (sc) from immunocompetent F1 H-2bxd mice were infused into H-2b or H-2d mice carrying the severe combined immunodeficiency (scid) mutation, creating F1sc-->H-2b and F1sc-->H-2d chimeras, respectively. Immunization with DNA plasmids encoding the herpes simplex virus gB or the human immunodeficiency virus gp120 glycoproteins elicited antiviral CTL activity. F1sc-->H-2d chimeras responded to an H-2d-restricted gp120 epitope but not an H-2b restricted gB epitope, whereas F1sc-->H-2b chimeras responded to the H-2b but not the H-2d restricted epitope. This pattern of epitope recognition by the sc chimeras indicated that APCs of recipient (scid) origin were involved in initiation of CTL responses. Significantly, CTL responses against epitopes presented by the mismatched donor class I molecules were elicited if F1 bone marrow cells and sc were transferred into scid recipients before or several days to weeks after DNA immunization. Thus, bone marrow-derived APCs are sufficient for class I MHC presentation of viral antigens after i.m. immunization with plasmid DNA. Expression of plasmid DNA by these APCs is probably not a requirement for CTL priming. Instead, they appear to present proteins synthesized by other host cells.
Resumo:
Stress protein GRP78/BiP is highly induced in progressively growing tumors and has recently been shown to exert a protective role against lysis by cytotoxic T cells and tumor necrosis factor in vitro. This raises the question whether the in vitro observed protective function of GRP78/BiP translates into the in vivo situation in which tumors grow progressively, killing the host. Herein we report that molecular inhibition of GRP78/BiP induction in the fibrosarcoma B/C10ME, while not affecting in vitro cell proliferation, causes a dramatic increase in apoptotic cell death upon Ca2+ depletion of the endoplasmic reticulum. When B/C10ME cells incapable of inducing GRP78/BiP are injected into mice, tumors are initially formed that, however, regress presumably due to a cytotoxic T-cell response demonstrable by a strong in vitro response to the tumor with spleen cells of regressor mice. Since sensitivity to apoptosis is key to tumor rejection, these results may point to new approaches to the therapy of cancer via regulation of stress protein GRP78/BiP.
Resumo:
Il lavoro di ricerca presentato in questa tesi di dottorato riguarda l'applicazione di studi di modellistica molecolare per l'individuazione di nuovi approcci farmacologici nel campo della neuroprotezione e del controllo della proliferazione di cellule staminali. Durante il mio dottorato di ricerca, mi sono concentrata sullo studio del sistema degli endocannabinoidi come target per lo sviluppo di nuovi trattamenti neuroprotettivi. In particolare, la mia ricerca ha avuto come obiettivo la modulazione dei livelli di 2-arachidonilglicerolo e arachidonil-etanolamide tramite l'inibizione degli enzimi MGL (monoglyceride lipase) e FAAH (fatty acid amide hydrolase). Il mio progetto di ricerca comprende anche studi di modellistica molecolare per l'individuazione di piccole molecole in grado di inibire il complesso proteina-proteina YAP-TEAD. Tale complesso, coinvolto nei sistemi di regolazione della proliferazione cellulare, rappresenta un target di cruciale importanza nel controllo della proliferazione e differenziazione di cellule staminali e, al tempo stesso, nel controllo dell'espansione tumorale
Resumo:
As Doenças inflamatórias intestinais (DII) são multifatoriais e sua etiologia envolve susceptibilidade genética, fatores ambientais, disbiose e ativação exacerbada do sistema imunológico no intestino. Essas doenças também tem sido relacionadas a baixos níveis de dehidroepiandrosterona (DHEA), um hormônio precursor de diversos esteroides e relacionado à modulação das respostas imunes. Porém, os mecanismos precisos que relacionam as ações deste hormônio com a proteção ou susceptibilidade à doença de Crohn ou colite ulcerativa ainda não são totalmente conhecidos. Sendo assim, este projeto buscou entender o papel imunomodulador do DHEA exógeno in vitro e in vivo durante a inflamação intestinal experimental induzida por dextran sulfato de sódio (DSS) em camundongos C57BL/6. Inicialmente, in vitro, DHEA inibiu a proliferação de células do baço de forma dose dependente nas concentrações de 5?M, 50?M ou 100?M, com diminuição da produção de IFN-?. Este hormônio não foi tóxico para células de linhagem mieloide, embora tenha causado necrose em leucócitos nas doses mais elevada (50 ?M e 100?M), o que pode ter influenciado a diminuição das citocinas in vitro. Nos ensaios in vivo, os camundongos tratados com DHEA (40 mg/Kg) foram avaliados na fase de indução da doença (dia 6) e durante o reparo tecidual, quando os animais expostos ao DSS e ao DHEA por 9 dias foram mantidos na ausência destas drogas até o dia 15. Houve diminuição do escore pós-morte, melhora no peso e nos sinais clínicos da inflamação intestinal, com redução de monócitos no sangue periférico com 6 dias e aumento de neutrófilos circulantes na fase de reparo tecidual (15 dias). Ainda, a suplementação com DHEA levou à redução da celularidade da lâmina própria (LP) e ao restabelecimento do comprimento normal do intestino. O uso deste hormônio também diminuiu a expressão do RNAm de IL-6 e TGF-?, enquanto aumentou a expressão de IL-13 no colón dos animais durante a fase de indução da doença, o que provavelmente ajudou na atenuação da inflamação intestinal. Além disso, houve acúmulo de linfócitos CD4+ e CD8+ no baço e diminuição apenas de linfócitos CD4+ nos linfonodos mesentéricos (LNM), indicando retenção das células CD4+ no baço após uso do DHEA. O tratamento foi também capaz de aumentar a frequência de células CD4 produtoras de IL-4 e diminuir CD4+IFN-?+ no baço, além de reduzir a frequência de CD4+IL-17+ nos LNM, sugerindo efeito do DHEA no balanço das respostas Th1/Th2/Th17 relacionadas à colite. Em adição, as células de baço dos animais tratados com DHEA e expostos ao DSS se tornaram hiporresponsivas, como visto pela diminuição da proliferação após re-estímulos in vitro. Finalmente, DHEA foi capaz de atuar no metabolismo dos camundongos tratados, levando à diminuição de colesterol total e da fração LDL no soro durante a fase de indução da doença, sem gerar quaisquer disfunções hepáticas. Com isso, podemos concluir que o DHEA atua por meio do balanço das respostas imunes exacerbadas, minimizando os danos locais e sistêmicos causados pela inflamação intestinal induzida por DSS.