94 resultados para spermidine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho teve como objetivo estudar o efeito das poliaminas espermidina e espermina no crescimento de calos Hancornia speciosa Gomes. Calos com 0,5 cm de diâmetro foram inoculados em meio Murashige & Skoog (1962) (MS) a 50% + 100 mg L-1 de caseína hidrolisada + 200 mg L-1 de levedura de cerveja, variando os tratamentos:A: 1 mmol de espermina + 2 mg L-1 de 2,4-D (ácido 2,4 diclorofenoxiacético) + 0,5 mg L-1 de NAA (ácido naftalenoacético); B: 1 mmol de espermidina + 2 mg L-1 de 2,4-D + 0,5 mg L-1 de NAA; C: 2 mg L-1 de 2,4-D + 0,5 mg L-1 de NAA. Não houve influência das poliaminas no crescimento dos calos. observou-se, nos calos tratados com espermidina, maior concentração celular de putrescina (582,37 µg g mf-1) aos 60 dias, maior teor de espermidina (502,54 µg g mf-1) e espermina (868,53 µg g mf-1) aos 40 dias de cultivo, quando se aplicou a própria poliamina. Conclui-se que a aplicação exógena de poliaminas em Hancornia speciosa não proporciona aumento no crescimento de calos. A oxidação promovida por longos períodos de cultivo in vitro induz aumento nos níveis de putrescina.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Biotecnologia - IQ

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the research was to study the effects of exogenous polyamines putrescine, spermidine and spermine and ethylene on in vitro morphogenesis of Aechmea distichantha (Bromeliaceae). The plants obtained in vitro by shoots division were transferred to MS growth regulators free, MS + 10 μmol Put, MS + 10 μmol Spd, MS + 10 μmol Spm, MS + 10 mg/L ethylene and MS + 20 mg/L ethylene. Plants were harvest after 0, 15, 30, 45 and 60 days of culture. Number of shoots and roots and endogenous concentrations of polyamines Put, Spd and Spm, protein and peroxidase activity in leaves were evaluated. Spd stimulated shoots formation on A. Distichantha. All treatments had deleterious effect on rhizogenesis. Plants treated with polyamines had higher proteins levels when compared to ethylene indicating the growing and development of explants. Ethylene treatment had no effect on polyamines levels. Thus, the biosynthetic routes of ethylene and polyamines may not compete for the common precursor S-adenosylmethionine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ELECTROCHEMICAL AND CALORIMETRIC INVESTIGATION OF INTERACTION OF NOVEL BISCATIONIC ANTICANCER AGENTS WITH DNA. Biscationic amidines bind in the DNA minor groove and present biological activity against a range of infectious diseases. Two new biscationic compounds (bis-alpha,omega-S-thioureido, amino and sulfide analogues) were synthesized in good yields and fully characterized, and their interaction with DNA was also investigated. Isothermal titration calorimetry (ITC) was used to measure the thermodynamic properties of binding interactions between DNA and these ligands. A double stranded calf thymus DNA immobilized on an electrode surface was used to study the possible DNA-interacting abilities of these compounds towards dsDNA in situ. A remarkable interaction of these compounds with DNA was demonstrated and their potential application as anticancer agents was furthered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mygalin is an antibacterial molecule isolated froth the hemocytes of the spider Acanthoscurria gomesiana. It was identified as bis-acylpolyamine spermidine. We evaluated the modulator effects of synthetic Mygalin in the innate immune response. We demonstrate that Mygalin induces IFN-gamma synthesis by splenocytes increasing the nitrite secretion by splenocytes and macrophages. A specific inhibitor of iNOS abrogated Mygalin-induced nitrite production in macrophages independent of IFN-gamma activation. In addition, Mygalin-activated macrophages produced TNF-alpha but not IL-1 beta, demonstrating that Mygalin does not act directly on the inflammasome. Furthermore, this compound did not affect spontaneous or Concanavalin A-induced proliferative responses by murine splenocytes and did not induce IL-5 or apoptosis of splenocytes or bone marrow-derived macrophages. These data provide evidence that Mygalin modulates the innate immune response by inducing IFN-gamma and NO synthesis. The combined immune regulatory and antibacterial qualities of Mygalin should be explored as a strategy to enhance immune responses in infection. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: Ripening evaluation of two different Pecorino cheese varieties ripened according either to a traditional method in plant and in cave. Different ripening features have been analyzed in order to evaluate the cave as possible ripening environment with the aim of obtaining a peculiar product which could also establish an added value to the cultural heritage of the local place in which it has been originally manufactured. Methods and Results: Chemical-physical features of Pecorino cheese have been initially analyzed into two different ripening environments and experimentations, among which: pH, weight reduction and subsequent water activity. Furthermore, the microbial composition has been characterized in relationship with the two different ripening environments, undertaking a variety of microbial groups, such as: lactic bacteria, staphylococci, yeasts, lactococci, enterobacteria, enterococci. Besides, an additional analysis for the in-cave adaptability evaluation has been the identification of biogenic amines inside the Pecorino cheese (2-phenilethylamine, putrescine, cadaverine, hystidine, tyramine, spermine and spermidine). Further analysis were undertaken in order to track the lipid profile evolution, reporting the concentration of the cheese free fatty acids in object, in relation with ripening time, environment and production. In order to analyse the flavour compounds present in Pecorino cheese, the SPME-GC-MS technique has been widely employed. As a result, it is confirmed the trend showed by the short-chain free fatty acids, that is to say the fatty acids which are mostly involved in conveying a stronger flavor to the cheese. With the purpose of assessing the protheolytic patterns of the above-mentioned Pecorino cheese in the two different ripening environments and testing methods, the technique SDS-PAGE has been employed into the cheese insoluble fraction, whereas the SDS-PAGE technique has been carried out into the cheese soluble portion. Furthermore, different isolated belonging to various microbial groups have been genotypically characterized though the ITS-PCR technique with the aim to identify the membership species. With reference to lactic bacillus the characterized species are: Lactobacillus brevis, Lactobacillus curvatus and Lactobacillus paraplantarum. With reference to lactococci the predominant species is Lactococcus lactis, coming from the employed starter used in the cheese manufacturing. With reference to enterococcus, the predominant species are Enterococcus faecium and Enterococcus faecalis. Moreover, Streptococcus termophilus and Streptococcus macedonicus have been identified too. For staphylococci the identified species are Staphyilococcus equorum, Staphylococcus saprophyfiticus and Staphylococcus xylosus. Finally, a sensorial analysis has been undertaken through on one side a consumer test made by inexperienced consumers, and on the other side through a panel test achieved by expert consumers. From such test Pecorino cheese ripened in cave were found to be more pleasant in comparison with Pecorino cheese ripened in plant. Conclusions: The proposed approach and the undertaken analysis showed the cave as preferential ripening environment for Pecorino cheese and for the development of a more palatable product and safer for consumers’ health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jasmonates (JAs) and spermidine (Sd) influence fruit (and seed) development and ripening. In order to unravel their effects in peach fruit, at molecular level, field applications of methyl jasmonate (MJ) and propyl dihydrojasmonate (PDJ), and Sd were performed at an early developmental stage (late S1). At commercial harvest, JA-treated fruit were less ripe than controls. Realtime RT-PCR analyses confirmed a down-regulation of ethylene biosynthetic, perception and signaling genes, and flesh softening-related genes. The expression of cell wall-related genes, of a sugar-transporter and hormone-related transcript levels was also affected by JAs. Seeds from JA-treated fruit showed a shift in the expression of developmental marker genes suggesting that the developmental program was probably slowed down, in agreement with the contention that JAs divert resources from growth to defense. JAs also affected phenolic content and biosynthetic gene expression in the mesocarp. Levels of hydroxycinnamic acids, as well as those of flavan-3-ols, were enhanced, mainly by MJ, in S2. Transcript levels of phenylpropanoid pathway genes were up-regulated by MJ, in agreement with phenolic content. Sd-treated fruits at harvest showed reduced ethylene production and flesh softening. Sd induced a short-term and long-term response patterns in endogenous polyamines. At ripening the up-regulation of the ethylene biosynthetic genes was dramatically counteracted by Sd, leading to a down-regulation of softening-related genes. Hormone-related gene expression was also altered both in the short- and long-term. Gene expression analyses suggest that Sd interfered with fruit development/ripening by interacting with multiple hormonal pathways and that fruit developmental marker gene expression was shifted ahead in accord with a developmental slowing down. 24-Epibrassinolide was applied to Flaminia peaches under field conditions early (S1) or later (S3) during development. Preliminary results showed that, at harvest, treated fruit tended to be larger and less mature though quality parameters did not change relative to controls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poplar is considered a good candidate for phytoremediation, but its tolerance to heavy metals has not been fully investigated yet. In the present work, two different culture systems (in vitro and aeroponic/hydroponic) and two different stress tolerant clones of Populus alba (AL22 and Villafranca) were investigated for their total polyphenol and flavonoid content, individual phenolic compounds, polyamine, lipid peroxidation and hydrogen peroxide levels in response to Cu. In AL22 poplar plants cultured in vitro in the presence or absence of 50 μM Cu, total leaves polyphenol and flavonoid content was higher in treated samples than in controls but unaltered in the roots. Equally the same clone, grown under aeroponic conditions and hydroponically treated for 72 h with 100 μM Cu, displayed increased amount of polyphenols and flavonoids in the leaves, in particular chlorogenic acid and quercetin, and no differences in the roots. In exudates from treated roots total polyphenols and flavonoids, in particular catechin and epicatechin, were more abundant than in controls. Polyamine levels show an increase in conjugated putrescine (Put) and spermidine (Spd) was found. In the Villafranca clone, treated with 100 μM Cu for 6, 24 and 72 h, the pattern of polyphenol and flavonoid accumulation was the same as in AL22; in Cu-treated roots these compounds decreased compared with controls while they increased in root exudates. Free polyamine levels rose at 24 and 72 h while only conjugated Put increased at 24 h. Cu-treated Villafranca plants exhibited a higher malondialdehyde production than controls indicative of membrane lipid peroxidation and, therefore, oxidative stress. An in vitro experiment was carried to investigate the antioxidant effect of the polyamine spermidine (Spd). Exogenous Spd, supplied together with 100 μM Cu, reduced the accumulation of polyphenols and flavonoids, MDA and hydrogen peroxide induced by Cu.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study is to investigate on some molecular mechanisms contributing to the pathogenesis of osteoarthritis (OA) and in particular to the senescence of articular chondrocytes. It is focused on understanding molecular events downstream GSK3β inactivation or dependent on the activity of IKKα, a kinase that does not belong to the phenotype of healthy articular chondrocytes. Moreover, the potential of some nutraceuticals on scavenging ROS thus reducing oxidative stress, DNA damage, and chondrocyte senescence has been evaluated in vitro. The in vitro LiCl-mediated GSK3β inactivation resulted in increased mitochondrial ROS production, that impacted on cellular proliferation, with S-phase transient arrest, increased SA-β gal and PAS staining, cell size and granularity. ROS are also responsible for the of increased expression of two major oxidative lesions, i.e. 1) double strand breaks, tagged by γH2AX, that associates with activation of GADD45β and p21, and 2) 8-oxo-dG adducts, that associate with increased IKKα and MMP-10 expression. The pattern observed in vitro was confirmed on cartilage from OA patients. IKKa dramatically affects the intensity of the DNA damage response induced by oxidative stress (H2O2 exposure) in chondrocytes, as evidenced by silencing strategies. At early time point an higher percentage of γH2AX positive cells and more foci in IKKa-KD cells are observed, but IKKa KD cells proved to almost completely recover after 24 hours respect to their controls. Telomere attrition is also reduced in IKKaKD. Finally MSH6 and MLH1 genes are up-regulated in IKKαKD cells but not in control cells. Hydroxytyrosol and Spermidine have a great ROS scavenging capacity in vitro. Both treatments revert the H2O2 dependent increase of cell death and γH2AX-foci formation and senescence, suggesting the ability of increasing cell homeostasis. These data indicate that nutraceuticals represent a great challenge in OA management, for both therapeutical and preventive purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To allow classification of bacteria previously reported as the SP group and the Stewart-Letscher group, 35 isolates from rodents (21), rabbits (eight), a dog and humans (five) were phenotypically and genotypically characterized. Comparison of partial rpoB sequences showed that 34 of the isolates were closely related, demonstrating at least 97.4 % similarity. 16S rRNA gene sequence comparison of 20 selected isolates confirmed the monophyly of the SP group and revealed 98.5 %-100 % similarity between isolates. A blast search using the 16S rRNA gene sequences showed that the highest similarity outside the SP group was 95.5 % to an unclassified rat isolate. The single strain, P625, representing the Stewart-Letscher group showed the highest 16S rRNA gene similarity (94.9-95.5 %) to members of the SP group. recN gene sequence analysis of 11 representative strains resulted in similarities of 97-100 % among the SP group strains, which showed 80 % sequence similarity to the Stewart-Letscher group strain. Sequence similarity values based on the recN gene, indicative for whole genome similarity, showed the SP group being clearly separated from established genera, whereas the Stewart-Letscher group strain was associated with the SP group. A new genus, Necropsobacter gen. nov., with only one species, Necropsobacter rosorum sp. nov., is proposed to include all members of the SP group. The new genus can be separated from existing genera of the family Pasteurellaceae by at least three phenotypic characters. The most characteristic properties of the new genus are that haemolysis is not observed on bovine blood agar, positive reactions are observed in the porphyrin test, acid is produced from (+)-L-arabinose, (+)-D-xylose, dulcitol, (+)-D-galactose, (+)-D-mannose, maltose and melibiose, and negative reactions are observed for symbiotic growth, urease, ornithine decarboxylase and indole. Previous publications have documented that both ubiquinones and demethylmenaquinone were produced by the proposed type strain of the new genus, Michel A/76(T), and that the major polyamine of representative strains (type strain not included) of the genus is 1,3-diaminopropane, spermidine is present in moderate amounts and putrescine and spermine are detectable only in minor amounts. The major fatty acids of strain Michel A/76(T) are C(14 : 0), C(16 : 0), C(16:1)omega7c and summed feature C(14 : 0) 3-OH/iso-C(16 : 1) I. This fatty acid profile is typical for members of the family Pasteurellaceae. The G+C content of DNA of strain Michel A/76(T) was estimated to be 52.5 mol% in a previous investigation. The type strain is P709(T) ( = Michel A/76(T) = CCUG 28028(T) = CIP 110147(T) = CCM 7802(T)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies could demonstrate, that the naturally occuring polyphenol resveratrol inhibits cell growth of colon carcinoma cells at least in part by inhibition of protooncogene ornithine decarboxylase (ODC). The objective of this study was to provide several lines of evidence suggesting that the induction of ceramide synthesis is involved in this regulatory mechanisms. Cell growth was determined by BrdU incorporation and crystal violet staining. Ceramide concentrations were detected by HPLC-coupled mass-spectrometry. Protein levels were examined by Western blot analysis. ODC activity was assayed radiometrically measuring [(14)CO(2)]-liberation. A dominant-negative PPARgamma mutant was transfected in Caco-2 cells to suppress PPARgamma-mediated functions. Antiproliferative effects of resveratrol closely correlate with a dose-dependent increase of endogenous ceramides (p<0.001). Compared to controls the cell-permeable ceramide analogues C2- and C6-ceramide significantly inhibit ODC-activity (p<0.001) in colorectal cancer cells. C6-ceramide further diminished protein levels of protooncogenes c-myc (p<0.05) and ODC (p<0.01), which is strictly related to the ability of ceramides to inhibit cell growth in a time- and dose-dependent manner. These results were further confirmed using inhibitors of sphingolipid metabolism, where only co-incubation with a serine palmitoyltransferase (SPT) inhibitor could significantly counteract resveratrol-mediated actions. These data suggest that the induction of ceramide de novo biosynthesis but not hydrolysis of sphingomyelin is involved in resveratrol-mediated inhibition of ODC. In contrast to the regulation of catabolic spermidine/spermine acetyltransferase by resveratrol, inhibitory effects on ODC occur PPARgamma-independently, indicating independent pathways of resveratrol-action. Due to our findings resveratrol could show great chemopreventive and therapeutic potential in the treatment of colorectal cancers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphatidylserine synthase catalyzes the committed step in the synthesis of the major lipid of Escherichia coli, phosphatidylethanolamine, and may be involved in regulating the balance of the zwitterionic and anionic phospholipids in the membrane. Unlike the other enzymes involved in the biosynthesis of phospholipids in E. coli, phosphatidylserine synthase is not membrane associated but seems to have a high affinity for the ribosomal fraction of cells broken by various methods. Investigations on the enzyme in cell free extracts using glycerol gradient centrifugation revealed that the binding of the synthase to ribosomes may be prevented by the presence of highly basic compounds such as spermidine and by the presence of detergent-lipid substrate micelles under assay conditions. Thus phosphatidylserine synthase may not be ribosome associated under physiological conditions but associated with its membrane bound substrate (Louie and Dowhan (1980) J. Biol. Chem. 255, 1124).^ In addition homogeneous enzyme shows many of the properties of a membrane associated protein. It binds nonionic detergent such as Triton X-100, which is also required during purification of the enzyme. Optimal catalytic activity is also dependent on micelle or surface bound substrate. Phosphatidylserine synthase has been synthesized in vitro using a coupled transcription-translation system dependent on the presence of the cloned structural gene. The translation product was found to preferentially associate with the ribosomal fraction even in the presence of added E. coli membranes. Preferential membrane binding could be induced if the membranes were supplemented with the lipid substrate CDP-diacylglycerol. Similar effects were obtained with the acidic lipids phosphatidylglycerol and cardiolipin. On the other hand the zwitterionic lipid phosphatidylethanolamine and the lipid product phosphatidylserine did not cause any detectable membrane association. These results are consistent with the enzyme recognizing membrane bound substrate (Carman and Dowhan (1979) J. Biol. Chem. 254, 8391) and with the lipid charge influencing membrane interaction.^ Phosphatidylserine synthase is at a branch point in lipid metabolism, which may determine the distribution of the zwitterionic and anionic phospholipids in the membrane. The results obtained here indicate phosphatidylserine synthase may play a significant role in membrane lipid biosynthesis by maintaining charge balance of the E. coli membrane. In determining the localization of phosphatidylserine synthase in vitro one may have a better understanding of its function and control in vivo and may also have a better understanding of its role in membrane assembly.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

N1-ethyl-N11-[(cyclopropyl)methyl]-4,8,-diazaundecane (CPENSpm) is a polyamine analogue that represents a new class of antitumor agents that demonstrate phenotype-specific cytotoxic activity. However, the precise mechanism of its selective cytotoxic activity is not known. CPENSpm treatment results in the superinduction of the polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase (SSAT) in sensitive cell types and has been demonstrated to induce programmed cell death (PCD). The catalysis of polyamines by the SSAT/polyamine oxidase (PAO) pathway produces H2O2 as one product, suggesting that PCD produced by CPENSpm may be, in part, due to oxidative stress as a result of H2O2 production. In the sensitive human nonsmall cell line H157, the coaddition of catalase significantly reduces high molecular weight (HMW) DNA (≥50 kb) and nuclear fragmentation. Important to note, specific inhibition of PAO by N,N′-bis(2,3-butadienyl)-1,4-butane-diamine results in a significant reduction of the formation of HMW DNA and nuclear fragmentation. In contrast, the coaddition of catalase or PAO inhibitor has no effect on reducing HMW DNA fragmentation induced by N1-ethyl-N11-[(cycloheptyl)methyl]-4,8,-diazaundecane, which does not induce SSAT and does not deplete intracellular polyamines. These results strongly suggest that H2O2 production by PAO has a role in CPENSpm cytotoxicity in sensitive cells via PCD and demonstrate a potential basis for differential sensitivity to this promising new class of antineoplastic agents. Furthermore, the data suggest a general mechanism by which, under certain stimuli, cells can commit suicide through catabolism of the ubiquitous intracellular polyamines.