138 resultados para spermatogonia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The etoposide is an anticancer drug that interacts with topoisomerase II. Thirty-day-old rats received intraperitonially 2mg/kg of etoposide for 30 consecutive days. Their testes were analyzed in the adult phase under light microscopy according to histomorphometric and stereological parameters. Random 3mum-thick-paraplast sections of testis were stained with periodic acid-Schiff reaction and Harris' hematoxylin method. Serum testosterone level and reproductive performance were also investigated. The results showed an accentuated decrease in the frequency of germinal lineage cell types and differentiated spermatogonia were the most affected cell types. Morphometric and stereological testicular parameters exhibited highly, significant reductions in adult etoposide-treated rats. Their reproductive performance diminished but their serum testosterone level was not significantly altered. The mortality frequency of the progenies was 100%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gerbil (Meriones unguiculatus) is a rodent native of the and regions of Mongolia and China. Because the gerbil can be easily bred in laboratory conditions, this species has been largely used as an experimental model in biomedical research. However, there is still little information concerning the testis structure and function in the gerbil. In this regard, we performed a detailed morphofunctional analysis of the gerbil testis and estimated the spermatogenic cycle length utilizing H-3-thymidine as a marker for germ cell progression during their evolution through the spermatogenic process. The stage frequencies of the XII stages characterized according to the acrosome formation and development were (I-XII) 13.8, 10.1, 8.1, 7.8, 4.0, 11.2, 7.5, 7.1, 5.9, 7.6, 8.1, and 8.9. The mean duration of each seminiferous epithelium cycle was determined to be 10.6 +/- 1.0 days and the total duration of spermatogenesis, based on 4.5 cycles, was approximately 47.5 days. The volume density of tubular and interstitial compartments was approximately 92% and 8%, respectively. Based on the volume occupied by seminiferous tubules in the testis and the tubular diameter, about 9 and 18 m of seminiferous tubules were found per testis and per gram of testis, respectively. Twelve primary spermatocytes were formed from each type A1 spermatogonia. The meiotic index was 2.8, indicating that 30% of cell loss occurs during meiosis. The number of Leydig and Sertoli cells per gram of the testis was 28 million and each Sertoli cell was able to support approximately 13 spermatids. The daily sperm production per gram of testis (spermatogenic efficiency) was 33 million. Taken together, these data indicate that, mainly due to the high seminiferous tubule volume density and Sertoli cell support capacity for germ cells, the gerbil presents high spermatogenic efficiency compared with other mammalian species already investigated. The data obtained in the present study might provide the basis for future research involving the reproductive biology in this species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reproductive strategy is the set of adaptations that promote the most efficient way that the species will survive under the particular conditions of a determined environment. Understanding these adaptations is important and can help pinpoint populations indicator of environmental changes. Spermatogenesis is a measurable biological process of these adaptations in spatial and temporal scales. We analyzed the morphology of the testes and oviducts of the lizard species that comprise the genus Tropidurus, taking into account the geographical distribution and sympatric relations. For the analysis and the testes were removed from the middle part of the oviducts from Tropidurus etheridge, T oreadicus, T itambere, T spinulosus and T Guarani species, collected in different places in the Mato Grosso state, Brazil. The reproductive period is synchronous for males and females and occurs in September, October and November. Reproductive males were characterized. In the testes are seminiferous tubules with germ cells at different stages of spermatogenesis, with a high epithelium, at present light, free spermatozoa in the lumen and reduction of interstitial tissue. For females, the reproduction peak occurs when the oviduct epithelium is high with secretions and basal nucleus. These months are characterized in the sampled areas over a period of heavy rain and high temperatures. The decline of reproductive period was observed in both sexes, between April and August. Low reproduction in males is characterized by ample light, absence of sperm, only germ cells in the early stages of spermatogenesis are observed (a few spermatogonia and spermatocytes) and interstitial tissue wide. In females, the period of reproductive decline is marked by the absence of unicellular glands in the oviduct epithelium, with higher affinity with the dye. This period corresponds to low rainfall periods and lower temperatures. We propose an analysis of zoological samples; this is a proposal to facilitate the work of many researchers through access to the species, especially rare species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Testicles of 30 mongrel cats were analyzed histologically and morphometrically, divided into three groups: G1 (1-2 years old), G2 (over 2 and up to 4 years old) and G3 (over 4 and up to 6 years old). After orchiectomy and histopathology, the morphometric parameters studied were: thickness of the tunica albuginea (72 mu m) and seminiferous epithelium (77.19 mu m), perimeter (53.81; 90.57 mu m), (54.80; 101.07 mu m); area (174.23; 494.55 mu m(2)), (176.68; 629.70 mu m(2)); maximum diameter (14.94; 28.02 mu m), (14.76; 31.66 mu m); minimum diameter (13.25; 21.92 mu m), (13.30; 24.52 mu m); and shape factor (index for regularity of the format) (1.36; 1.36), (1.39; 1.35) of the nucleus and cytoplasm of spermatogonia and Leydig cells, respectively. The results can be used for comparative studies and contribute knowledge concerning the height of the seminiferous epithelium, thickness of the tunica albuginea and size of spermatogonia and Leydig cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The seminiferous tubules of Prochilodus scrofa present a coiled morphological arrangement with intertubular anastomoses and unrestricted spermatogonial distribution. The structural pattern of the seminiferous tubules is cystic, with cysts formed by cytoplasmic prolongations of Sertoli cells. Inside the cysts are observed different types of germ cells. The seminiferous tubules open individually on the ventral surface of the main testicular duct present in each testis. Each main testicular duct prolongs as a spermatic duct, fusing with the spermatic duct of the opposite side to form the common spermatic duct which opens into the urogenital papilla. The mature sperm cysts break and extravasate their content into the lumen of the seminiferous tubules from which the seminal fluid and the spermatozoa penetrate the main testicular duct, the spermatic duct and the common spermatic duct for semen ejaculation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spermatogenesis of 'corvina' P. squamosissimus starts from a stem cell that gives rise to germ cells. These cells are enveloped by Sertoli cells, forming cysts. The germ cells in the cysts are all at the same stage of development and are interconnected by cytoplasmic bridges. Spermatogonia are the largest germ cells. In the cysts, these cells differentiate into primary spermatogonia and secondary spermatogonia. The primary spermatogonia are isolated in the cyst and give rise to the secondary spermatogonia. After several mitotic divisions, they produce spermatocytes I, which can be identified by synaptonemal complexes in the nucleus. The spermatocytes I enter the first phase of meiosis to produce the spermatocytes II. These are not very frequently seen because they rapidly undergo a second phase of meiosis to produce spermatids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In anuran amphibian Scinax fuscovarius, the spermatogenesis occurs in structures called seminiferous loculi, in which germ epithelium is organized in spermatocysts. Each cyst contains cells in the same stage of cytodifferentiation. Characteristics of each cellular type and their groups made the identification and differentiation of the germ lineage cells possible. In the basis of the epithelium there are the spermatogonia I, the biggest cells and always associated with the Sertoli cell. After the phase of mitotic proliferation, the cysts containing variable number of spermatogonia II are originated, quite smaller and with cellular boundaries a little distinct. After differentiation and growth in volume, the spermatocytes I appear, the nuclei of which are spherical and with different degrees of compaction of the nuclear material. Starting the meiotic process, the spermatocytes II are originated, which by means of the second meiotic division become haploid cells, the spermatids I. These two last spermatocysts are very similar. In this phase, the cells will go through a prominent process of differentiation until they form the spermatids II, which are elongated and begin to be organized in bundles supported by prominent Sertoli cells. With the process of spermiogenesis, spermatozoa appear, usually observed in compact bundles with tails turned to the lumen and their heads fitted in their support cells. In more advanced stages, the spermatozoa can be observed free in the locular lumen, ready to follow the spermatic path.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Amifostine is an efficient cytoprotector against toxicity caused by some chemotherapeutic drugs. Doxorubicin, a potent anticancer anthracycline, is known to produce spermatogenic damage even in low doses. Although some studies have suggested that amifostine does not confer protection to doxorubicin-induced testicular damage, schedules and age of treatment have different approach depending on the protocol. Thus, we proposed to investigate the potential cytoprotective action of amifostine against the damage provoked by doxorubicin to prepubertal rat testes (30-day-old) by assessing some macro and microscopic morphometric parameters 15, 30 and 60 days after the treatment; for fertility evaluation, quantitative analyses of sperm parameters and reproductive competence in the adult phase were also carried out.Methods: Thirty-day-old male rats were distributed into four groups: Doxorubicin (5 mg/kg), Amifostine (400 mg/kg), Amifostine/Doxorubicin (amifostine 15 minutes before doxorubicin) and Sham Control (0.9% saline solution). Standard One Way Anova parametric and Anova on Ranks non-parametric tests were applied according to the behavior of the obtained data; significant differences were considered when p < 0.05.Results: The rats killed 30 and 60 days after doxorubicin treatment showed diminution of seminiferous epithelium height and reduction on the frequency of tubular sections containing at least one type of differentiated spermatogonia; reduction of sperm concentration and motility and an increase of sperm anomalous forms where observed in doxorubicin-treated animals. All these parameters were improved in the Amifostine/Doxorubicin group only when compared to Doxorubicin group. Such reduction, however, still remained below the values obtained from the Sham Control group. Nevertheless, the reproductive competence of doxorubicin-treated rats was not improved by amifostine pre-administration.Conclusions: These results suggest that amifostine promotes a significant reduction of the doxorubicin long-term side effects on the seminiferous epithelium of prepubertal rats, which is reflected in the epidydimal fluid parameters in the adult phase. However, fertility status results suggest that such protection may not be effective against sperm DNA content damage. Further investigation of sperm DNA integrity must be carried out using amifostine and doxorubicin-treated experimental models. © 2010 Vendramini et al; licensee BioMed Central Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vertebrate species, testosterone seems to inhibit spermatogonial differentiation and proliferation. However, this androgen can also be converted, via aromatase, into estrogen which stimulates spermatogonial differentiation and mitotic activity. During seasonal spermatogenesis of adult bullfrogs Lithobates catesbeianus, primordial germ cells (PGCs) show enhanced testosterone cytoplasm immunoexpression in winter; however, in summer, weak or no testosterone immunolabelling was observed. The aim of this study was to confirm if PGCs express stem cell markers-alkaline phosphatase (AP) activity and GFRα1 (glial-cell-line-derived neurotrophic factor)-and verify whether testosterone is maintained in these cells by androgen receptors (ARs) and/or sex hormone-binding globulin (SHBG) in winter. Furthermore, regarding the possibility that testosterone is converted into estrogen by PGCs in summer, the immunoexpression of estrogen receptor (ER)β was investigated. Bullfrog testes were collected in winter and in summer and were embedded in glycol methacrylate for morphological analyses or in paraffin for the histochemical detection of AP activity. GFRα1, AR, SHBG and ERβ expression were detected by Western blot and immunohistochemical analyses. The expression of AP activity and GFRα1 in the PGCs suggest that these cells are spermatogonial stem cells. In winter, the cytoplasmic immunoexpression of ARs and SHBG in the PGCs indicates that testosterone is maintained by these proteins in these cells. The cytoplasmic immunoexpression of ERβ, in summer, also points to an ER-mediated action of estrogen in PGCs. The results indicate a participation of testosterone and estrogen in the control of the primordial spermatogonia during the seasonal spermatogenesis of L. catesbeianus. © 2012 S. Karger AG, Basel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myotis nigricans is an endemic species of vespertilionid bat, from the Neotropical region, that resembles temperate zone bats in their reproductive cycle; presenting an annual reproductive cycle with two periods of testicular regression, which are not linked to the apoptotic process and seems to be not directly linked to any seasonal abiotic variation. Thus, this study aimed to ultrastructurally evaluate their reproductive cycle. The process of testicular regression could be divided into four periods: active; regressing; regressed and recrudescence; with all presenting distinct characteristics. The active period was similar to that of other bats, presenting the complete occurrence of spermatogenesis, with three main types of spermatogonia (Ad, Ap, and B) and 12 steps in spermatid differentiation; however, it differed in having the outer dense fibers 1, 5, 6, and 9 larger than the others. These three types of spermatogonia undergo considerable morphologic changes from regressing to the regressed period, and in the recrudescence, they return to the basic morphology, which reactivates spermatogenesis. In conclusion, our study described the process of spermatogenesis, the ultrastructure of the spermatozoa and the distinct morphologic variations in the ultrastructure of the testicular cells of M. nigricans during the four different periods of its annual reproductive cycle. Microsc. Res. Tech., 76:1035-1049, 2013. © 2013 Wiley Periodicals, Inc.